

Classical Mechanics Qualifier (January 2026)

George Mason University

You are allowed to use your graduate textbook during the exam.
3 problems | Total 100 points

Problem 1 (20pts) A particle of mass m moves along the x -axis in a potential

$$U(x) = -ax^2 + bx^4$$

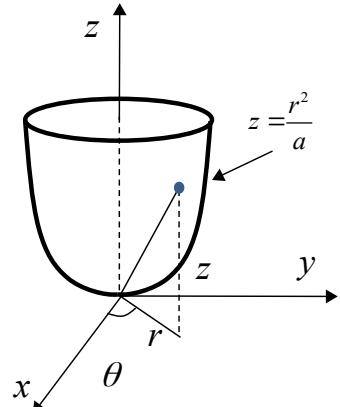
where a and b are positive constants.

- Write down the Hamiltonian describing this system and its Hamilton's equations of motion.
- Find the equilibria of the system, and for each one determine if it is stable or unstable. Find the frequency of small oscillations ω around the stable points.
[Hint: To calculate the frequency of small oscillations, just expand the resultant 2nd ODE around the equilibrium and pick out the frequency.]
- State the Hamilton's Principle of Least Action. Consider a trajectory where the particle sits stationary at one of the stable equilibrium points for a total time T . What is the classical action S along this trajectory?

Problem 2 (40pts) A particle of mass m is constrained to move under the influence of gravity on the inside of a smooth parabolic surface of revolution given by $r^2 = az$. Use the Lagrange undetermined multiplier method to derive the constraint force for this problem. Write your answer as a vector in cylindrical coordinates.

Hint: You might want to use the two constants of motion E and l to simplify some of your expressions. The magnitude of the constraint force is proportional to

$$\left(1 + \frac{4r^2}{a^2}\right)^{-3/2}$$



Problem 3 (40pts) Consider the orbits of a mass m in a central inverse-cube force,

$$F = -\frac{k}{r^3},$$

where k is a positive constant. Solve the radial equation of motion for r as a function of the angle variable θ on the orbital plane and classify them as bound or unbound for each of the following three cases:

- i. Large angular momentum: $l > \sqrt{mk}$
- ii. Small angular momentum: $l < \sqrt{mk}$
- iii. $l = \sqrt{mk}$

(l is the constant generalized momentum corresponding to the generalized coordinate θ .)