<section-header>

Anodic vs cathodic stimulation

Recruitment properties

Magnitude of muscular contraction depends on: (1) electrode type; (2) stimulation waveform shape, time, amplitude; (3)location of electrode relative to motoneuron.

Force modulation can be achieved by: (1) rate modulation (2) recruitment

(1) **rate modulation**: there's summation of muscular contraction if high enough frequency is used, but the muscle is more prone to fatigue. Higher frequency leads to higher (faster) fatigue.

(2) **recruitment**: number of motoneurons stimulated: more neurons means more muscles.

the "wire" secure it in the muscle.

Urinary Bladder: histology		
Tutorial Name: Neoplasia ConceptName: In situ carcin Slide Name: Bladder Transiti	oma Ional Epithelium	
Image Description: Tr found only in the condu urinary system. Note th with their large nuclei a These are typical of tra	ansitional epithelium is icting passages of the e columnar surface cells nd prominent nucleoli. nsitional epithelium.	
Structures	Structure Descriptions	Contraction of the second states
lamina propria	In the bladder, this is the rather dense connective tissue layer beneath the epithelium.	
transitional epithelium	When the bladder is not distended (as in this slide), the line of swollen cells at the surface is particularly evident.	

The "del" operator (nabla, or
$$\nabla$$
)
 $\nabla = i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z}$
Gradient of p (where p is a scalar field): a vector field!
If we simply multiply a scalar field such as p(x,y,z) by the del operator, the result is a vector field, and the components of the vector at each point are just the partial derivatives of the scalar field at that point, i.e.,
 $\nabla_p = i \frac{\partial p}{\partial x} + j \frac{\partial p}{\partial y} + k \frac{\partial p}{\partial z}$

Now we want to multiply a vector field v by the gradient.

Dot product between vectors a(x,y,z) and b(x,y,z):

Cross product between same vectors:

1) Dot product between gradient and v(x,y,z): Defined as the DIVERGENCE of v (it's a scalar!)

$$\nabla \cdot \mathbf{v} = \frac{\partial \mathtt{v}_{\mathtt{x}}}{\partial \mathtt{x}} + \frac{\partial \mathtt{v}_{\mathtt{y}}}{\partial \mathtt{y}} + \frac{\partial \mathtt{v}_{\mathtt{z}}}{\partial \mathtt{z}}$$

2) Cross product between gradient and $\mathbf{v}(x,y,z)$: Defined as the CURL of \mathbf{v} (it's a vector!)

$$\nabla \times \mathbf{v} = \left(\frac{\partial \mathtt{v}_{\mathtt{z}}}{\partial \mathtt{y}} - \frac{\partial \mathtt{v}_{\mathtt{y}}}{\partial \mathtt{z}}\right) \mathbf{i} + \left(\frac{\partial \mathtt{v}_{\mathtt{x}}}{\partial \mathtt{z}} - \frac{\partial \mathtt{v}_{\mathtt{z}}}{\partial \mathtt{x}}\right) \mathbf{j} + \left(\frac{\partial \mathtt{v}_{\mathtt{y}}}{\partial \mathtt{x}} - \frac{\partial \mathtt{v}_{\mathtt{x}}}{\partial \mathtt{y}}\right) \mathbf{k}$$

Laplacian operator (∇^2): divergence of the gradient. Scalar field!

$$\nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

