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Neuronal Computations with
Stochastic Network States
Alain Destexhe1* and Diego Contreras2

Neuronal networks in vivo are characterized by considerable spontaneous activity, which is
highly complex and intrinsically generated by a combination of single-cell electrophysiological
properties and recurrent circuits. As seen, for example, during waking compared with being
asleep or under anesthesia, neuronal responsiveness differs, concomitant with the pattern of
spontaneous brain activity. This pattern, which defines the state of the network, has a dramatic
influence on how local networks are engaged by inputs and, therefore, on how information is
represented. We review here experimental and theoretical evidence of the decisive role played by
stochastic network states in sensory responsiveness with emphasis on activated states such as
waking. From single cells to networks, experiments and computational models have addressed the
relation between neuronal responsiveness and the complex spatiotemporal patterns of network
activity. The understanding of the relation between network state dynamics and information
representation is a major challenge that will require developing, in conjunction, specific
experimental paradigms and theoretical frameworks.

B
rain operations are embedded in a con-

tinuous stream of complex spontaneous

activity that interacts nonlinearly with

incoming sensory inputs, outgoing motor com-

mands, and internal association processes. Spon-

taneous brain activity refers to ongoing network

activity not dominated by any particular sin-

gle sensory input. Spontaneous brain activity

is generated by the combination of intrinsic

electrophysiological properties of single neu-

rons (1) and synaptic interactions in networks

(2); it is dependent on the level of activation of

neuromodulatory systems (3, 4) and is cor-

related with the functional state of the brain (2).

Most of the existing knowledge about the re-

lation between neuronal responsiveness and

spontaneous brain activity comes from the com-

parison between waking and sleep states (5).

However, even within the stable state of wak-

ing, subtle variations in the spatiotemporal

pattern of network activation strongly influ-

ence information processing, and vice versa,

sensory inputs modify ongoing activity. Such

interplay between intrinsically generated ac-

tivity and its modulation by external input is

at the very core of the mechanisms by which

the brain represents the external world and

elaborates successful response strategies. The

complexity of network dynamics is beyond

the reach of current recording methods and

requires appropriate computational methods

carefully constrained by biological data. Pre-

dictions from current modeling efforts are a

critical guide for designing new experimental

approaches.

Experimental Characterization of Intrinsic
Dynamics in Neocortex

Understanding the neuronal mechanisms of

spontaneous brain activity is of critical impor-

tance in understanding its role in information

processing. For example, the cellular mecha-

nisms of synchronized oscillations during sleep

and anesthesia explain why neural responsive-

ness is reduced during those states (2). How-

ever, much less is known about the complex

intrinsic dynamics that characterize the sponta-

neous activity during the waking state. It is

during the waking state that response variability

and the spatiotemporal patterns of network ac-

tivation are key elements of the brain operations

that generate adaptive behavior.

The spontaneous activity recorded in the

electroencephalogram (EEG) from cortex and

thalamus varies greatly between waking and

sleep states. During sleep, the EEG is dominated

by large-amplitude waves with high temporal

and spatial coherence (Fig. 1A), and most of its

spectral power is below 15 Hz (4). Rhythmic

components are prevalent, although they are

highly aperiodic and interspersed with non-

rhythmic large-amplitude waves. Intracellular

recordings in vivo demonstrate large variations

in membrane potential (V
m

) occurring synchro-

nously across large populations (5, 6).

In contrast, upon awakening or during rapid

eye movement (REM) sleep (also termed brain

activated states), EEG spontaneous activity is

characterized by low-amplitude waves, with

low spatial and temporal coherence and high

spatiotemporal complexity (Fig. 1B), not domi-

nated by any identifiable pattern (4). The spec-

tral power of the activated EEG is characterized

by frequencies above 15 Hz. Intracellular rec-

ordings in vivo during activated states demon-

strate absence of slow oscillations or any large

V
m

fluctuations characteristic of sleep (7). In-

stead, cortical and thalamic neurons show a

stable resting V
m

at a depolarized level close to

firing threshold and a noisy, highly irregular

pattern of background synaptic activity (7) (Fig.

1C). Interspersed within the synaptic back-

ground activity, there are short bouts of fast

(20 to 80 Hz) oscillations, which last a few tens

of milliseconds and which are occasionally

crowned by spikes (8). Therefore, fast oscillations

in cortical and thalamic networks are different

from the intrinsically generated, well-organized,

and stable subthreshold oscillations in highly

rhythmic structures such as the inferior olive (9).

Fast oscillations also appear in relation to sen-

sory stimuli and have been proposed to subserve

a coordinating function among neuronal groups
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representing similar stimulus features [reviewed

in (10)]. How the same oscillations that appear

spontaneously as part of the background activity

(8) are also steered to fulfill such function is

unknown.

Relation Between Spontaneous Activity and
Neuronal Responsiveness

The relation between spontaneous activity and

neuronal and network responsiveness has been

mainly studied by observing the dramatic changes

that take place during the transition between

the behavioral states of waking and sleep or

during variations in the level of anesthesia

(Fig. 1D). A plethora of functional studies in

the visual (11–16), somatosensory (17), audi-

tory (18–20), and olfactory (21) systems have

shown that slow, high-amplitude activity in the

EEG is associated with reduced neuronal re-

sponsiveness and neuronal selectivity. [For an

extensive review of the literature and a his-

torical perspective, see (5).]

Cellular studies in vivo and in vitro have

shown how such changes in responsiveness

come about. During the transition to sleep or

anesthesia, cortical and thalamic cells progres-

sively hyperpolarize, thus distancing the mem-

brane from spike threshold and decreasing

excitability. In addition, hyperpolarization brings

the membrane potential to the activation range

of intrinsic currents underlying burst firing, par-

ticularly in thalamic cells. Because of its all-or-

none behavior and its long refractory period,

thalamic bursting is incompatible with the relay

function that characterizes activated states and

thus act as the first gate of forebrain deafferen-

tation, i.e., blockade of ascending sensory

inputs (22, 23). Synchronized inhibitory inputs

during sleep oscillations further hyperpolarize

cortical and thalamic neurons and generate

large membrane shunting, resulting in a dra-

matic decrease in responsiveness and a large

increase in response variability. Finally, high-

ly synchronized patterns of rhythmic activity

(24) dominate neuronal membrane behavior

and render the network unreliable and less

responsive to inputs. Taken together, the

above mechanisms result in the functional

brain deafferentation that characterizes sleep

and anesthesia (2, 22).

In contrast, during waking and REM sleep,

a depolarized stable resting V
m

close to spike

threshold allows neurons to respond to inputs

more reliably and with less response variability.

However, the detailed understanding of the cel-

lular mechanisms underlying the changes in

processing state between waking and sleep or

anesthesia is not enough to explain an impor-

tant paradox posed by the two activated brain

states. Despite their striking electrophysiolog-

ical similarity at the intracellular and EEG

levels (7) and the often enhanced evoked po-

tentials during REM (25, 26), waking and REM

are diametrically opposite behavioral states (27),

because REM sleep is the deepest stage of

sleep, i.e., it is the stage with the highest thresh-

old for waking up. In an attempt to explain this

paradox, it was shown, using magnetoencepha-

lography in humans, that the main difference in

responsiveness during the two states is their ef-

fect on the ongoing gamma (È40 Hz) oscil-

lations (28). Responses to auditory clicks caused

a reset of the ongoing gamma rhythm, whereas

during REM, the evoked response did not change

the phase of the ongoing oscillation; these find-

Fig. 1. Complex spatiotemporal patterns of ongoing network activity during wake and sleep states in
neocortex. (A) Spatiotemporal map of activity computed from multiple extracellular local field
potential (LFP) recordings in a naturally sleeping cat during slow-wave sleep (SWS). The activity
consists of highly synchronized slow waves (in the d frequency range, 1–4 Hz), which are irregular
temporally but coherent spatially. (B) Same recording arrangement when the animal was awake. In
this case, the b frequency–dominated LFPs (15–30 Hz) are weakly synchronized and very irregular
both spatially and temporally. [(A) and (B) modified from (73)] (C) Intracellular recordings during
these two states show slow oscillations during slow-wave sleep (SWS, left), and a sustained depolarized
state with intense fluctuations during wakefulness (Awake, right). [Courtesy of Igor Timofeev, Laval
University] (D) Network state–dependent responsiveness in visual cortex. Cortical receptive fields
obtained by reverse correlation in simple cells for ON responses. The procedure was repeated for
different cortical states, by varying the depth of the anesthesia (EEG indicated above each color map).
(Left) Desynchronized EEG states (light anesthesia); (right) synchronized EEG states with prominent
slow oscillatory components (deeper anesthesia). Receptive fields were always smaller during
desynchronized states. Color code for spike rate (see scale). [Modified from (12)]
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ings suggest that, during dream sleep, sensory

input is not incorporated into the context repre-

sented by the ongoing activity (29). The obvious

conclusion is that much smaller changes in net-

work dynamics than those that differentiate sleep

and waking are critical in determining the

processing state of the brain. The failure to detect

the differences in network dynamics that must

exist between waking and REM sleep is a clear

indication that new approaches are necessary.

Another outstanding example of the role of

intrinsic network dynamics in determining neu-

ronal responsiveness is the effect of attention.

Even though the parameters of network activity

measured with current techniques seem to re-

main stable, shifts in attentional focus both in

space (30) and time (31) increase the ability of

the network to process stimuli by increasing neu-

ronal sensitivity to stimuli. The neuronal mech-

anisms underlying attentional shifts are unknown;

however, the effect of directed attention enhanc-

ing neuronal responsiveness and selectivity, as

well as behavioral performance (32), is a clear

indication of the critical role played by subtle

changes of network dynamics in determining the

outcome of network operations.

Two types of computer models discussed in

the second part of this review attempt to cap-

ture the relation between network dynamics and

neuronal responsiveness. Both classes of mod-

els explore the complex interaction between

sensory inputs and noisy network states. In the

first category of models, noise is generated

externally and does not explicitly represent the

properties of the network itself. In the second

class of models, noise is generated intrinsically

and is, therefore, constrained by the properties

of the network, a state that is much closer to the

in vivo situation.

The reverse problem is also of critical im-

portance: how much the network dynamics

are modified by ongoing sensory inputs. Al-

though cortical and thalamic networks may

be strongly activated by specific patterns of

stimuli (20, 33), such effects are likely due to

the engagement of brainstem neuromodula-

tory systems, which receive dense collaterals

from ascending sensory inputs (5). Recordings

from visual cortex of awake, freely viewing

ferrets (34) revealed that the spatial and tem-

poral correlation between cells while natural

scenes were viewed varies little when compared

with values obtained during eyes closed. This

subtle variation indicates that most of the spatial

and temporal coordination of neuronal firing is

driven by network activity and not by the

complex visual stimulus. This paradigm is cap-

tured by network models in which the input is

interrelated with the network state (see below).

In conclusion, the parameters that determine

network dynamics have a critical effect in de-

termining responsiveness and information rep-

resentation. Network dynamics are likely to be

defined at the single-cell level and, therefore, to

elude current recording methods that either

grossly undersample the population, such as

multiunit recordings, or that average out neu-

ronal specificity, such as field potentials or

optical recordings. Therefore, critical transitions

of network state underlying changes in respon-

siveness would go undetected by the global

measures of activity currently in use. This under-

lines the important role of neuronal modeling

to explore the properties of network dynamics

in the irregular and noisy conditions of the wak-

ing state.

Computational Models of Network State–
Dependent Computations

In the simplest type of computational model,

the role of intrinsic network dynamics was in-

vestigated by representing irregular network

activity as ‘‘noise’’ added to either single neu-

rons or networks. Here, a variable presynaptic

discharge, summed over many synapses, is ap-

proximated by ‘‘noise’’ imposed on the cell. A

second, more elaborate type of model is to

consider the state of the network explicitly and

how network states can be used for various

forms of computation. In the most sophisticated

type of model, the input and network state are

interdependent. We consider these three types

of approaches successively.

Single-neuron and network responsiveness

in the presence of noise. The simplest type of

activity-dependent model is designed to con-

sider the responsiveness of single neurons or

networks in the presence of variable amounts of

noise. Contrary to intuition, noise can have ben-

eficial effects, especially in nonlinear systems

driven by weak inputs. Such a positive effect of

noise was first investigated by physicists and

globally termed ‘‘stochastic resonance’’ (35), in

which the signal-to-noise ratio is maximal for a

nonzero level of noise. This type of paradigm is
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Fig. 2. Impact of network activity (‘‘synaptic noise’’) on single neurons. (A) Single-trial responses of a
model cortical neuron receiving synaptic noise. A stimulus (glutamatergic conductance) was delivered
(arrow), either subthreshold (left) or suprathreshold (right). A fraction of the subthreshold stimuli gave
rise to action potentials (left); however, not all suprathreshold stimuli gave a response. (B) Response
curve computed from simulations similar to (A). The response curve gives the probability of action
potential evoked by the stimulus, as a function of stimulus strength. In quiescent conditions, the
response curve is all-or-none (action potential threshold around 0.2 mS/cm2). With synaptic noise,
subthreshold stimuli were boosted (downward arrow), while suprathreshold stimuli were attenuated
(upward arrow). [(A) and (B) modified from (42)] (C) Effect of the amount of synaptic noise (measured
by its variance; increasing noise levels from 0 to 2) on the response curve in real cortical neurons where
synaptic noise was injected under dynamic clamp. [Modified from (38)] (D) Effect of synaptic noise on
thalamic neurons. (Top) Spike probability as a function of interstimulus interval in a quiescent thalamic
neuron stimulated by random glutamatergic conductances. The responsiveness was very different at
hyperpolarized potentials (Hyp) because of the boosting effect of calcium currents and bursts. (Bottom)
Same paradigm in the presence of synaptic noise. Here, the spike probability was nearly independent of
stimulus ISI and of membrane potential. [Modified from (44)]
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relevant for the central nervous system and, in

particular, for the cerebral cortex for several

reasons. One is the nonlinearity of neurons, and

another is that cortical neurons operate in vivo

during the waking state in highly irregular or

noisy states. Electrophysiological and modeling

studies have measured the impact of cortical

network activity during activated states on

single neurons (through intracellular record-

ings). In parallel, models have estimated the

conditions of ‘‘synaptic bombardment’’ that

correspond to these measurements (36). These

studies concluded that cortical neurons are in

a ‘‘high-conductance state,’’ in which synaptic

activity causes large V
m

fluctuations

(also called synaptic noise) and an

intense overall membrane conduct-

ance compared with the resting

(leak) conductance of the neuron.

Therefore, synaptic noise can have

substantial effects on the behavior

of the neuron. Despite this noisy

aspect, high-conductance states pro-

vide computational advantages to

neurons (36); the responsiveness to

small inputs is enhanced by synaptic

noise (Fig. 2, A and B), and the ef-

fect of synaptic inputs can become

roughly independent of their loca-

tion in dendrites (37). These effects

are due to both the high conduct-

ance and the level of noise. More-

over, the small membrane time

constant due to high conductances

gives the neuron a better temporal

resolution. Enhanced responsiveness

can also be viewed as gain modula-

tion and was also identified in real

neurons by injecting artificial syn-

aptic noise like that experienced in

vivo by using dynamic clamp tech-

niques (38–42). The response curve

in the presence of noise is smooth

(Fig. 2, B and C), so that sub-

threshold inputs are boosted, while

suprathreshold inputs are attenuated

(43) (arrows in Fig. 2B). Similar

response curves were also obtained

during the depolarizing phase of the

slow oscillation in vitro (38). Syn-

aptic noise can also combine with

intrinsic properties, such as the low-

threshold calcium currents in tha-

lamic neurons, which lead to a

responsiveness that is much less

dependent on the V
m

level (44)

(Fig. 2D). This shows that intrinsic

neuronal properties are expressed

differently when considered togeth-

er with network activity; both com-

bine to yield a global responsiveness

that depends on the properties of

intrinsic currents and the amount of

synaptic noise. Thus, network activity has a

decisive impact on the input-output transforma-

tions of single neurons and confers to networks’

fundamentally different information-processing

capabilities as a function of their state.

Further evidence that network state has im-

pacts on information processing comes from

studies of the effect of noise in neural network

models. Noise is beneficial to associative mem-

ories by avoiding convergence to spurious

states (45); it enables networks to follow high-

frequency stimuli (46), boosts the propaga-

tion of waves of activity (47), enhances input

detection abilities (48, 49), and enables pop-

ulations of neurons to respond more rapidly

(50–52). Noisy networks can also sustain a

faithful propagation of firing rates [(53, 54), but

see (55)] or pulse packets (56) across succes-

sive layers (Fig. 3). The latter results are

particularly interesting, because noise allows

populations of neurons to relay a signal across

successive layers without attenuation [in the

case of firing rate propagation (Fig. 3C)] or

prevents a catastrophic invasion of synchronous

activity (Fig. 3D). The fact that a complex

waveform propagates in a noisy network (Fig.

3C), but not with low noise levels (Fig. 3B),

can be understood qualitatively from the
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Fig. 3. Beneficial effects of noise at the network level. (A) Scheme of a multilayered network of integrate-and-fire
(IF) neurons where layer 1 received a temporally varying input. (B) With low levels of noise (‘‘synfire mode’’), firing
was only evoked for the strongest stimuli, and synchronous spike volleys propagated across the network. (C) With
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population encoded stimulus amplitude more reliably. [Modified from (42)]
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response curve of neurons in the presence of

noise (Fig. 2B), for which there is a reliable

coding of stimulus amplitude. Indeed, a similar

effect is visible in the population response of

networks of noisy neurons (Fig. 3E). With low

noise levels, the nearly all–or–none response

acts as a filter, which allows only strong stimuli

to propagate and leads to propagation of synfire

waves (Fig. 3D). With stronger noise levels,

comparable to intracellular measurements in

vivo, the response curve is progressive, which

allows a large range of input amplitudes to be

processed (Fig. 3C).

Thus, as for the single-cell paradigms

discussed above, noise can have beneficial

effects at the network level. Here also, noise

can be thought of as representing the background

network activity presynaptic to single cells, so

these studies can be viewed as investigating

network computations in states of irregular

network activity. However, instead of explicitly

modeling these states as generated by the

network itself (see below), the study is per-

formed in a quiescent network subject to

external sources of noise. In this case, the main

finding is that the nature of propagation of activity

is fundamentally different—and in many cases,

better—in the presence of noise.

Computing with intrinsic network states. A

more elaborate type of model comes from

explicitly considering the state of the network

and its effect on computations or responsive-

ness to external inputs. Here again, one may

find inspiration from physics, in particular

from studies of how different dynamic states

of matter provide different properties with

respect to interactions with the environment.

For example, in fluid dynamics, a fluid can

adopt laminar or turbulent states when subject

to different constraints. Turbulent states have

considerably larger effective transport coeffi-

cients that enable the fluid to satisfy those

constraints (57). A similar paradigm was ap-

plied to describe propagating activity in net-

works of excitatory and inhibitory neurons

that display either silent, oscillatory (period-

ic), or irregular (chaotic or intermittent) states

of activity (58) (Fig. 4A). Irregular states are

optimal with respect to information transport

[as defined by the diffusion coefficient for

Shannon mutual information (Fig. 4A, right)].

Thus, similar to turbulence in fluids, irregular

cortical states may represent a dynamic state

that provides an optimal capacity for informa-

tion transport in neural circuits. However,

such an analogy must be refined by using

more realistic models and connectivity (59).

More recent studies have explicitly consid-

ered networks endowed with intrinsically gen-

erated irregular activity states (51, 52, 60, 61).

Can the effect of noise on propagation discussed

above be obtained when this noise is internally

generated by the network? Such ‘‘internally gen-

erated noise,’’ stemming from self-sustained

irregular states of activity, was tested with re-

spect to enhancing propagation properties in

networks of excitatory and inhibitory neurons

(60, 61). However, propagation was difficult to

observe; firing rates did not propagate unless

synapses were reinforced (more than 10-fold)

along specific feedforward pathways (61) (Fig.

4B). Similarly, pulse packets led to explosions of

activity (‘‘synfire explosions’’) in the network

(Fig. 4C), and to enable propagation, synfire

chains also had to be pre-embedded into the

connectivity (60). Such embedding of feedfor-

ward pathways is of course not satisfactory, and

the problem of how to obtain reliable propaga-

tion in recurrent networks is still open. The net-

work states studied may not have the right level

of excitability. In agreement with this, for firing

rate models (61), a simple calculation shows that

the total synaptic conductance in single cells is

about 15 to 30 times as large as the leak con-

ductance, which is about 5 times as large as in

vivo measurements (62) and probably exerts an

excessive shunting effect and counteracts prop-

agation. Future studies should verify if better

propagation capabilities are present in networks

with a diversity of conductance states and cel-

lular properties compatible with in vivo mea-

surements, although such states may not be easy

to obtain (63).

Interrelated input and network state. A

further step in complexity corresponds to

models where the input and the network state

are interdependent. The simplest of such mod-

els is when external inputs influence network

activity. Network activity will necessarily be

influenced by external inputs, so the complex

spatiotemporal activity in a given network is

likely to reflect properties of the inputs and

cannot be considered as independent. The first

approach to take into account such dependence

is the ‘‘liquid-state machine’’ paradigm (64). In

this case, a network of spiking neurons is main-

tained in a self-sustained irregular state, and the

network receives ongoing inputs. A few cells

from the network are taken as output, and their
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network. Periodic states (green) had a relatively low diffusion coefficient, whereas, for irregular or
chaotic states (blue), information transport was enhanced. [Modified from (58)] (B) Propagation of
activity in a network of neurons displaying self-sustained irregular states. (Left) Definition of successive
layers and pathways; (middle) absence of propagation with uniform conditions (left) contrasted with
propagation when pathway synapses were reinforced (right); (right) propagation of a time-varying
stimulus with pathway synapses reinforced. [Modified from (61)] (C) Propagation of activity in a network
with self-sustained irregular dynamics. Successive snapshots illustrate that a stimulus (leftmost, red) led
to an ‘‘explosion’’ of activity, followed by silence and echoes. [Modified from (60)]
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noisy pattern of activity is decoded by ‘‘readout

units,’’ which can learn to extract information

about the inputs. The activity of neurons at a

given time contains information about the input

at prior times, thus it is possible to generate a

desired output at any time in a system receiving

ongoing inputs. Information is stored in the

activity of the network, which necessarily re-

flects input history. Thus, in the liquid-state

machine paradigm, network activity acts as a

sophisticated nonlinear filter, and although

different network states were not explored, this

approach has the merit of proposing a comput-

ing paradigm that explicitly uses complex

dynamics in network activity as a means to in-

tegrate information [see also (65, 66)]. This

type of paradigm is also compatible with results

showing that cortical sensory responses primar-

ily reflect modulations of network activity

rather than being input-driven (34).

Finally, the most sophisticated paradigm is

that in which the input itself depends on net-

work state. This type of modulation has been

found in several sensory systems where inter-

nally generated signals are matched with sen-

sory inputs. This is the case for the corollary

discharge (also termed efference copy), which

represents a copy of the internally generated

motor command, which is matched to sensory

inputs, performing cancellation or prediction

(67–70). A similar interaction may arise more

generally through thalamocortical loops; the

cortex massively projects to the same thalamic

cells from which cortical input originates, and

cortical synapses on thalamic neurons out-

number peripheral synapses by about one order

of magnitude (71). Such a massive cortico-

thalamic feedback can potentially modulate,

complement, or even predict sensory inputs. In

these cases, cortical network state will neces-

sarily influence and modulate its own inputs

(72). Such bidirectional interactions between

input and network state are, of course, consid-

erably more difficult to model and constitute

clear challenges for future studies.

Conclusion

Much remains to be done to properly char-

acterize internal brain dynamics and how they

modulate computations. We need to obtain ade-

quate experimental methods to properly measure

the different dynamic states exhibited by neural

circuits, and how network activity is modulated

by parameters such as attention or sensory in-

puts. To characterize their computational proper-

ties, modeling studies have so far implicitly

assumed that a given network produces only

one prototypical state of irregular activity, but

evidence indicates that this may not be true in

general [in Fig. 3A (right), for example, the

information flow can be up to two times larger

between different chaotic states (58)]. Further-

more, networks may switch rapidly among states

according to rules not yet known (33) and with

important consequences for information pro-

cessing. One approach would be to characterize

intracellularly the diverse dynamics of fluctua-

tions (or oscillations) in single cells and to model

their effect on the neuron’s input/output function.

This single-cell characterization can then be used

to infer propagating properties at the network

level, constrained by global recordings methods

such as imaging. It is only through a tight

combination of experiments and models that we

will better understand the computational proper-

ties of internally generated brain states.
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comments on the manuscript. We acknowledge support
from NIH, the Human Frontier Science Program, the
European Community, and the CNRS.

10.1126/science.1127241

Modeling the Mind

6 OCTOBER 2006 VOL 314 SCIENCE www.sciencemag.org90


