
Experiment 9

Synchronous Sequential Design

Design a synchronous sequential Moore machine which implements a 2-bit binary counter with the following characteristics:

- An active-high enable, EN
 - When EN = 1, the counter changes state
 - \circ When EN = 0, the counter maintains its current state
- An active-high control signal, UP
 - When UP = 1, the counter counts up in the sequence 00, 01, 10, 11, 00, ...
 - When UP = 0, the counter counts down in the sequence 00, 11, 10, 01, 00, ...
- An active-low asynchronous clear, CLR_BAR
 - When $CLR_BAR = 0$, the count is reset to 00
- A falling-edge triggered clock, CLK

To complete this experiment do the following:

- 1. Draw a state diagram which represents the Moore machine described above.
- 2. Fill in the state table below for the Next States and determine Excitation Variables necessary to implement the state machine using JK flip-flops.
- 3. Minimize the Boolean equations for the Excitation Variables.
- 4. Draw a detailed circuit diagram for the state machine, showing all pin connections.
- 5. Implement your circuit in hardware, using TTL parts, and verify its operation.
- 6. Write a VHDL structural description to implement the circuit, including the following: a. Entity declaration.
 - b. Structural architecture body using components from the ece332_gates package.
 - c. A testbench which demonstrates correct operation of the circuit.
- 7. Simulate your VHDL model and print the resulting waveforms.
- 8. Compare the results of the two implementations.

	Inputs		Present State		Next State		Excitation Variables				Outputs	
mt	EN	UP	Q ₁	Q ₀	Q_1^+	Q_0^+	J_1	K1	J ₀	K ₀	Z_1	Z ₀
0	0	0	0	0							0	0
1	0	0	0	1							0	1
2	0	0	1	0							1	0
3	0	0	1	1							1	1
4	0	1	0	0							0	0
5	0	1	0	1							0	1
6	0	1	1	0							1	0
7	0	1	1	1							1	1
8	1	0	0	0							0	0
9	1	0	0	1							0	1
10	1	0	1	0							1	0
11	1	0	1	1							1	1
12	1	1	0	0							0	0
13	1	1	0	1							0	1
14	1	1	1	0							1	0
15	1	1	1	1							1	1