
ECE 332

Digital Electronics and Logic Design Lab

Laboratory and Experiment Guide
Spring 2007

Table of Contents

Electronics Safety………………………………………………………………………..3
Laboratory Information………………………………………………………………….4
Laboratory Rules………………………………………………………………………...5
Lab Tips………………………………………………………………………………….6
Lab Report Outline……………………………………………………………………....8
Parts List…………………………………………………………………………………9
Aldec Active HDL Tutorial…………………………………………………………….10
Resources……………………………………………………………………………….27

Spring 2007

 2

 3

Electronics Safety

Exercise of good judgment and knowledge will ensure you a safe laboratory experience.

Do not defeat any safety device such as a fuse or circuit breaker, by shorting across it or by
using a higher amperage fuse than that specified by the manufacturer.

Avoid direct contact with any voltage source. Do not wear rings, watches, bracelets, or
dangling necklaces while working on equipment. Do not grasp any exposed metal in your
circuit when the power is on.

Keep hands dry. Water and perspiration increase conductivity.

Wear shoes with insulating soles.

Measure voltages with one hand held behind you or in your pocket.

Avoid eye injury when cutting off excessive wire lengths. Point the wires downward toward
your table top so the cut pieces cannot fly toward your eyes or another person’s.

Shut off the power when connecting components or test equipment to a circuit. Double check
your wiring before you apply power.

Make sure your circuit is properly grounded. Beware of a possible floating ground. It is a
good idea to connect all grounds together before applying power.

To prevent power terminals from shorting, keep the leads coming from those terminals apart.

Your exercise of common sense, safety precautions and knowledge will help you avoid the
dangers of electricity. The amount of current required to become lethal depends upon:

1. the person involved and state of health,
2. area of the body involved,
3. length of time the shock is received, and
4. type of electrical current.

Severe electrical shock will cause burns and/or paralysis. A small current passing through the
chest can kill. With even minor electrical shock, some people react by going into traumatic
shock.

In case of accident, turn off power immediately and call 911. If you suspect someone is
touching a “live” wire, do not touch them. Use something non-conductive to push, rather
than pull, them away from the wire. An injured person should be kept lying down until
medical personnel arrive, and should be kept warm to help prevent traumatic shock. Be sure
nothing is done to cause further injury.

 4

Laboratory Information

Sue Davies
Instructional Laboratories Manager
Room 120D, Science and Technology I
(703) 993-1608
email - sdavies@gmu.edu

Purchase all laboratory kits from the above. Replacement parts for all of the labs are
available. Special order kits will be filled, time permitting. Room 120D houses a fairly
complete inventory available to the University community. It is non profit, operated as a
service to our students. It means considerable savings when purchasing parts for your
Engineering senior projects. Juniors, NOW is the time to begin planning your senior project.

Also located in the Manager's Office is a reference library including data books (not available
in the main library), magazines, hardware, software and equipment catalogs. There are
reference books of manufacturer information (address, phone no., etc.). Magazines may be
checked out. Data books may only leave the office if you first leave a deposit.

Equipment repair is handled from this office. Please notify me of malfunctioning equipment.
Leave a note with symptoms or bring the equipment to my office.

All Teaching Assistants have mailboxes in ST II, in the hallway near room 208. Leave
messages there, not under the lab doors. Many students use the labs and your TA likely will
not receive material pushed under doors. Hand assignments and anything of value directly to
the TA's since the mailboxes aren’t in a secure area. Email is the best way to contact your
TA. Be sure to activate your University account to receive all official notices.

Teaching Assistants' office hours will be posted in ST I on the room 2 entry way bulletin
board, and room 120D entry door. In ST II, hours will be posted on the bulletin board across
from room 230 (ECE office), and on the door of rooms 203 and 265. Whenever anyone is
having office hours, it is also open lab time in that area.

The Engr. Computation and Test Lab needs ECE and CpE student volunteers to be Lab
Monitors. By signing up for three hours per week to open and monitor the lab, volunteers
obtain a door code and priority on one of the newest computers there. They have 24 hr./day,
7days/week access. This requires serious commitment for the semester. Successful volunteers
put this work on their resumes.

 5

Laboratory Rules

1. There will be NO FOOD OR DRINKS in the laboratory at any time. Students will be
held liable for any damage to equipment resulting from abuse of this rule.

2. Students are not allowed in the laboratories without a Lab Instructor or Lab Monitor
present, unless signed in with the Lab Manager. Open lab times for make-up or project work
will be posted. When a Teaching Assistant is holding office hours, he/she is also monitoring
an open lab which any student may use. ECE/CpE students have priority in the Computation
and Test Lab, Room 265, ST II.

3. If you suspect a problem with the equipment, notify the TA or Room Monitor. Then, leave
a note on it with a brief description of the problem/symptoms, or bring the equipment to the
Lab Manager, Room 120D, ST I.

4. Handle equipment with care. Equipment out for repair means less available for your use.

5. YOU are responsible for leaving your workstation clean and in good condition when you
leave. Failure to do this will negatively impact your final lab grade.

Before leaving:

a. Hang up all test leads neatly under appropriate connector combination.

b. Tidy workstation.

c. Throw away all trash.

d. TURN OFF equipment and lab table SWITCHES.

This is a non-smoking university. This building has NO designated smoking areas so you
must go outdoors if you choose to smoke.

 6

Lab Tips

1. Instruction manuals for the laboratory equipment may be checked out in room 120D,

S&T I. The oscilloscope manual is available for purchase in the book store. It is essential
that you become familiar with the correct way to use the basic equipment in your first lab
course. Wire cutters/strippers are available for sale or you may bring your own.

2. Twenty-two gauge wire (22AWG) is the best size to use with the trainers and solderless
breadboards. Solid wire only, never stranded, is used. There are spools of wire cabled to the
back shelf or table. You will need to cut some and strip the insulation at both ends.

Keep jumper wires short. Strive for a neat and logical layout. This will make
troubleshooting easier and successful circuits more likely. (See ex. posted in lab.)

Strip no more than approximately 3/8 inch of insulation from your jumper wires. Exposed
wire increases the risk of short circuits.

3. Using more than one color of wire will help you debug your circuits. Normally RED and

BLACK are reserved for power and ground.

4. Probe tips should not be inserted into the solderless breadboard. Wrap a wire around your
probe hook tip twice for stability and insert the other end into the connector block.
Alligator clips on the equipment leads also need a wrapped wire for connection to the
trainers and breadboards.

5. Always ground your probe, but keep the ground wire short. Use the method of wire
wrapping described in the previous tip to attach to the alligator clip of the probe ground
wire.

6. For any potentiometers (such as most multiturn) which require adjusting, a trimpot tool is
available for purchase from room 120D, S & T I. It is included in appropriate kits.

7. Most of the chips used in your lab are not overly static sensitive. However, you should
observe some precautions when handling them. If you were issued a tube, it protects the
chips from static charges, and is sturdy enough to provide protection to the delicate, metal
pin legs.

8. Keep your chips away from magnets, motors and high temperatures. Don’t leave them in
your car in the sun or extreme cold. They do best in the moderate temperatures most
humans prefer.

9. Bent pins may be gently straightened with fingernails or needlenose pliers. If the pins
break, you will need to purchase a new IC.

10. A small, narrow-blade, flathead screwdriver is useful in removing not so sensitive chips

from breadboards. Using a side-to-side rocking motion as you insert the blade under the
chip, keep a finger lightly on top of the chip to prevent it suddenly popping up on one
end, bending the pins.

11. To locate pin 1 on an integrated circuit (IC, chip), look for one of the following:

• A semicircle at one end, cut into the top layer of the chip - With this at the top, pin 1 is at
the left of the half circle.
• A tiny spot in the corner of the chip beside pin 1 -There may or may not be other
marks on the chip.
Always count pins from pin 1 around the chip so that the last pin is straight across from pin
1. Common chip sizes are 8 pin, 14, 16, 18, 20, 24, 28, and 40 pin. Your TTL ICs
(Transistor-Transistor Logic Integrated Circuits) will be in dual inline packages DIP).

12. Chip leads are slightly flared to help hold them in printed circuit boards while being

soldered. You will need to reduce the flare to allow them to be inserted into the breadboard.
Use a pair of needlenose pliers, or press the leads against a table top, while rotating the
body of the chip towards the lead points to reduce the lead angle of all evenly. The pin legs
should be at a 90 degree angle to the plastic package base. Don’t bend too far; there is no
easy correction.

 7

 8

Lab Report Outline

The lab reports for the experiments in the ECE 332 Lab (as applicable) must contain the
following information:

• Title Page
 • Title & Number of the Experiment
 • Course & Section Number
 • Name
 • Date
 • Signed Honor Code Pledge

• Brief Description of the Experiment
 • Approach used if the experiment is a word problem
 • Description of the techniques (QM, K-maps etc.) used to arrive at the final logic
 expression

• Software Implementation of the Logic Expression
 • Compiled version of the VHDL source code
 • Compiled version of the test bench
 • Simulation results (Timing Diagrams)

• Hardware Implementation of the Logic Expression
 • List of IC chips used to implement the logic expression
 • Detailed circuit diagram (including pin numbers) of the IC interconnections
 • Print outs of the outputs of the experiment

• Conclusion
 • Comparison between the hardware and software implementations

A lab report template and sample report (in MS Word format or PDF) can be found on the
ECE 332 Administration web page.

 9

1/26/2007Parts List

ECE 332 Laboratory Parts List

• 1 74LS00 Quad 2 input NAND gate
• 1 74LS02 Quad 2 input NOR gate
• 1 74LS04 Hex Inverter
• 1 74LS08 Quad 2 input AND gate
• 1 74LS10 Triple 3 input NAND gate
• 1 74LS11 Triple 3 input AND gate
• 1 74LS32 Quad 2 input OR gate
• 2 74LS73 Dual JK Flip-flop with clear
• 1 74LS86 Quad 2 input XOR
• 1 74LS151 8 to 1 Multiplexer
• 1 74LS155 Dual 2/4 Demultiplexer (Decoder)
• 1 74LS157 Quad 2 to 1 Multiplexer
• 1 74LS163 4-Bit Binary Counter
• 1 74LS283 4-Bit Adder
• 1 74C08 Quad 2-input AND gate

ALDEC ACTIVE HDL TUTORIAL

Start-up

1. Double click on the Active HDL icon on the desktop; it comes up with a getting started

window.

a. Select create new workspace and click OK, creates new workspace in your
directory.
b. Selecting open existing workspace gives you the option to choose from your
previous Workspace’s.
c. Always open last workspace takes you to the last workspace.

2. Type the workspace name you want to create and click OK and the default location of

your workspace will be your network drive\my_designs.

 10

3. Select create an empty design, creates a new design in your workspace and click Next.

4. Choose block diagram configuration as Default HDL language and Default HDL
language as VHDL; Leave the Target Technology blanks as not defined; Click Next.

 11

5. Type the design name you want to create and Click Next and the default location of your
design will be your network drive\my_designs\workspace name.

6. Design name and design directory will be displayed proceed further by clicking Finish.

 12

7. To the left workspace and new design are displayed.

8. To start with your VHDL source right click on Add New File > New > VHDL source,
then GO TO 9.
 To add existing files to your design GO TO 8A.

8A. To add existing files to your design, select Add New File> Add Files to Design.

 13

8B. New VHDL source can also be added by following up File > New > VHDL source.

9. Click Next on the new source file wizard.

.

 14

10. Type the source file name you want to create; you can give a different name for entity
and architecture. Click Next.

11. Select New in the New Source File Wizard-Ports, start declaring your input and output
ports by naming them, choosing the port direction, choose the type by indicating the array
indexes. Click Finish.

 15

12. If you have multiple designs in the same workspace you need to set an active design and
this can be done by a right click on your design and select Set as Active Design.

Main Window Toolbars

 16

Language Assistant helps you with the syntax of the VHDL data types.

Compiling the Design

Once the design is ready, compile it either by clicking on the toolbar as shown or hit F11 or
choose Design > Compile.

Console window

Console window appears at the bottom of the page with a success message if design is free of
errors.

 17

Generating Testbench

NOTE: To add your testbench, click Add New File>Add Files to Design as in 8A.

Testbench for the design can be generated as Tools > Generate Testbench.

Select the Design Unit (Entity and Architecture) for which testbench should be generated and
select testbench type as Single Process; Proceed by clicking Next.

 18

Testbench generator wizard appears with all your input ports under UUT ports; proceed
By clicking Next.

Click Next as the tool generates the names for all the design units, you can change them (Not
Recommended).

 19

Click Finish to proceed, the window below shows the files generated by the Testbench.

NOTE: Add your test conditions to the Testbench, Hit F11 to compile.

Getting Started with the Simulation

Before You simulate, select the Top level unit as your testbench as shown below in the
design browser.

NOTE: All files must be compiled before you select Top level unit.

 20

Initialize simulation by selecting Simulation > Initialize Simulation.

Click Structures (circled below) to see all the ports, select them and add to the waveform as
shown below.

 21

Hit F5 to run or select Simulation > Run For.

Wave Window Toolbar

 22

 23

Creating/Editing VHDL Files

Or3.vhd
--

--
-- Title : or3
-- Design : example
-- Author : shashi
-- Company : home
--
--

--
-- File : or3.vhd
-- Generated : Wed Jan 24 21:40:37 2007
-- From : interface description file
-- By : Itf2Vhdl ver. 1.20
--
--

--
-- Description :
--
--

--{{ Section below this comment is automatically maintained
-- and may be overwritten
--{entity {or3} architecture {behave}}

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity or3 is
_ port(
_ A : in STD_LOGIC;
_ B : in STD_LOGIC;
_ C : in STD_LOGIC;
_ Z : out STD_LOGIC
_);
end or3;

architecture behave of or3 is
begin

Z <= A or B or C;_

end behave;

 24

Or3_TB.vhd

--

--
-- Title : Test Bench for or3
-- Design : example
-- Author : shashi
-- Company : home
--
--

--
-- File : $DSN\src\TestBench\or3_TB.vhd
-- Generated : 1/24/2007, 9:49 PM
-- From : $DSN\src\or3.vhd
-- By : Active-HDL Built-in Test Bench Generator ver.
1.2s
--
--

--

-- Description: Automatically generated Test Bench for or3_tb
--
--

library ieee;
use ieee.std_logic_1164.all;

_-- Add your library and packages declaration here ...

entity or3_tb is
end or3_tb;

architecture TB_ARCHITECTURE of or3_tb is
_-- Component declaration of the tested unit
_component or3
_port(
_A : in std_logic;
_B : in std_logic;
_C : in std_logic;
_Z : out std_logic);
_end component;

_-- Stimulus signals - signals mapped to the input and inout
ports of tested entity
_signal A : std_logic;

 25

_signal B : std_logic;
_signal C : std_logic;
_-- Observed signals - signals mapped to the output ports of
tested entity
_signal Z : std_logic;

_-- Add your code here ...

begin

_-- Unit Under Test port map
_UUT : or3
_port map (
_A => A,
_B => B,
_C => C,
_Z => Z
_);
_process
_begin
_----Test case 1-----
_A<='0';
_B<='1';
_c<='0';
_wait for 20ns;__
_-----Test case 2-----
_ A<='1';
_B<='1';
_c<='0';
_wait for 20ns;
_-----Test case 3-----
_ A<='0';
_B<='1';
_c<='1';
wait for 20ns;
_-----Test case 4 boundary condition-----
_ A<='0';
_B<='0';
_c<='0';
wait for 20ns;

_-----Test case 5 boundary condition-----
_ A<='1';
_B<='1';
_c<='1';
wait for 20ns;
_end process;

_-- Add your stimulus here ...

 26

end TB_ARCHITECTURE;

configuration TESTBENCH_FOR_or3 of or3_tb is
_for TB_ARCHITECTURE
_for UUT : or3
_use entity work.or3(behave);
end for;
_end for;
end TESTBENCH_FOR_or3;

 27

Resources

 Find and explore all relevant web pages starting at
 http://ece.gmu.edu/~jkaps/courses/ece331/index.html

 Find the additional VHDL files for future experiments at

 Find an additional Tutorial for VHDL at

 http://ece.gmu.edu/labs/Active_HDL.pdf

http://ece.gmu.edu/%7Ejkaps/courses/ece331/index.html
http://ece.gmu.edu/labs/Active_HDL.pdf

ECE 332 Experiment 1 28

 28 1/6/05

Experiment 1

Given the circuit diagram above:

1. Write an algebraic expression of the output as a function of the input signals.
2. Working VHDL code for this experiment is provided, so you can concentrate on using

ModelSim and verifying simulation function equivalency:
• Go to the ECE 332 Experiments page (http://ece.gmu.edu/~rhayne/ece332/experiments.htm)

and save the source code for ece332_gates.vhd, lab1.vhd, and lab1_testbench.vhd into
your ece332_labs directory (created when you completed the Mentor Graphics Tutorial).

3. Using vsim (as you did in the tutorial), import all three of your new vhdl files, compile them
(ece332_gates first, then lab1, then lab1_testbench), and load the testbench.

4. Simulate and print the resulting waveforms for all possible inputs.
5. Draw a detailed diagram showing all the pin connections.
6. Implement the circuit in hardware, using the TTL devices from the parts list.

A

B

C

M

http://ece.gmu.edu/~rhayne/ece332/experiments.htm
callmen
Rectangle

ECE 332 Experiment 1

 29 1/6/05

lab1.vhd

-- Author : Dr. Ron Hayne
-- Date : July 11, 2004
-- Course : ECE332
-- File Name : lab1.vhd
-- Design Units : Lab1_Circuit
-- Purpose of Code : Entity description and multiple
-- architectures for lab1.
-- Hardware modeled : Circuit diagram given for lab1.
-- Model Limits : None known.
-- Known Errors : None known.
-- Design Library : work
-- Dependencies : ECE332_Gates
-- Environment:
-- Simulator : Mentor Graphics (ModelSim) V5.4d
-- Platform : Unix (SunOS 5.8)
--
-- Change List (most recent on top)
-- Date Who What
-- ------- --- ----
-- 11Jul04 rjh Creation

library IEEE;
use IEEE.std_logic_1164.all;

entity Lab1_Circuit is
 port(A : in std_logic;
 B : in std_logic;
 C : in std_logic;
 M : out std_logic);
end Lab1_Circuit;

architecture BEHAVE1 of Lab1_Circuit is
begin
 M <= (A and B) or (A and C) or (B and C);
end BEHAVE1;

callmen
Rectangle

ECE 332 Experiment 1

 30 1/6/05

architecture BEHAVE2 of Lab1_Circuit is
begin
 process(A, B, C)
 begin
 if (A = '1' and B = '1') then
 M <= '1';
 elsif (A = '1' and C = '1') then
 M <= '1';
 elsif (B = '1' and C = '1') then
 M <= '1';
 else
 M <= '0';
 end if;
 end process;
end BEHAVE2;

architecture BEHAVE3 of Lab1_Circuit is
 signal Input: std_logic_vector(2 downto 0);
begin
 Input <= A & B & C;
 with Input select
 M <= '1' when "011",
 '1' when "101",
 '1' when "110",
 '1' when "111",
 '0' when others;
end BEHAVE3;

use work.ECE332_Gates.all;

architecture STRUCTURE of Lab1_Circuit is
 signal AB : std_logic;
 signal AC : std_logic;
 signal BC : std_logic;
 signal OR1a : std_logic;
begin
 AND1: AND_74LS08 port map(A, B, AB);
 AND2: AND_74LS08 port map(A, C, AC);
 AND3: AND_74LS08 port map(B, C, BC);
 OR1: OR_74LS32 port map(AB, AC, OR1a);
 OR2: OR_74LS32 port map(OR1a, BC, M);
end STRUCTURE;

callmen
Rectangle

ECE 332 Experiment 1

 31 1/6/05

lab1_testbench.vhd

-- Author : Dr. Ron Hayne
-- Date : July 11, 2004
-- Course : ECE332
-- File Name : lab1_testbench.vhd
-- Design Units : Lab1_Testbench
-- Purpose of Code : This is a top level testbench for
-- Lab1_Circuit
-- Hardware modeled : This testbench creates an instance of the
-- Lab1_Circuit and then drives the inputs
-- and checks the results.
-- Model Limits : VHDL-93 Syntax (report)
-- Known Errors : None known
-- Design Library : work
-- Dependencies : Lab1_Circuit
-- Environment:
-- Simulator : Mentor Graphics (ModelSim) V5.4d
-- Platform : Unix (SunOS 5.8)
--
-- Change List (most recent on top)
-- Date Who What
-- ------- --- ----
-- 11Jul04 rjh Creation

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity Lab1_Testbench is
end Lab1_Testbench;

architecture Testbench of Lab1_Testbench is

 -- Signal Declarations
 signal Input : std_logic_vector(2 downto 0) := "000";
 signal M : std_logic;

 -- Component Declarations
 component Lab1_Circuit
 port(A : in std_logic;
 B : in std_logic;
 C : in std_logic;
 M : out std_logic);
 end component;

callmen
Rectangle

ECE 332 Experiment 1

 32 1/6/05

begin
 -- Component Instantiation
 Tested_Circuit : Lab1_Circuit port map(A => Input(2),
 B => Input(1),
 C => Input(0),
 M => M);

 -- Cycle through test vectors and evaluate the results
 process
 begin
 wait for 100 ns;
 case Input is
 when "011" | "101" | "110" | "111" =>
 assert (M = '1')
 report "Test Failed";
 when others =>
 assert (M = '0')
 report "Test Failed";
 end case;
 Input <= Input + "001";
 end process;
end Testbench;

callmen
Rectangle

ECE 332 Experiment 1

 33 1/6/05

callmen
Rectangle

ECE 332 Experiment 2

 34 1/6/05

Experiment 2

Given the circuit diagram above:

1. Write an algebraic expression of the output as a function of the input signals.
2. Fill in the truth table to determine the input/output relationship of the funcion.
3. Write a VHDL behavioral description to implement the circuit, including the following

a. Entity declaration
b. Behavioral architecture body
c. lab2_testbench.vhd (provided on the ECE 332 Experiments page)

4. Simulate and print the resulting waveforms for all possible inputs.
5. Draw a detailed diagram showing all the pin connections.
6. Implement the circuit in hardware, using the TTL devices from the parts list.
7. Compare the results of the two approaches with respect to the timing characteristics of the

outputs.

S

I1

E

I0

F1

Z

F2

callmen
Rectangle

ECE 332 Experiment 2

 35 1/6/05

Truth Table

E S I1 I0 F1 F2 Z

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

callmen
Rectangle

ECE 332 Experiment 3

 36 1/6/05

Experiment 3

Given the following function:

f (S,E, A,L) = ∑m(0,2,3,5,8,9,11,13,15) + d(1,4,10)

1. Using a K-map, determine a minimal sum-of-products covering of the function, using “don’t

cares” as appropriate.
2. Draw a gate level circuit diagram implementing the K-map derived function, using only

NAND gates.
3. Write a VHDL structural description to implement your circuit at the gate level, using the

pre-defined gate libraries. Be sure to including the following:
a. Entity declaration
b. Structural architecture body
c. An appropriate testbench

4. Simulate and print the resulting waveforms for all possible inputs.
5. Draw a detailed diagram showing all the pin connections.
6. Implement the circuit in hardware, using the TTL devices from the parts list.
7. Compare the results of the two approaches with respect to the timing characteristics of the

outputs.

callmen
Rectangle

ECE 332 Experiment 3

 37 1/6/05

Experiment 3

Given the following function:

f (S,E, A,L) = ∑m(0,2,3,5,8,9,11,13,15) + d(1,4,10)

1. Using a K-map, determine a minimal sum-of-products covering of the function, using “don’t

cares” as appropriate.
2. Draw a gate level circuit diagram implementing the K-map derived function, using only

NAND gates.
3. Write a VHDL structural description to implement your circuit at the gate level, using the

pre-defined gate libraries. Be sure to including the following:
a. Entity declaration
b. Structural architecture body
c. An appropriate testbench

4. Simulate and print the resulting waveforms for all possible inputs.
5. Draw a detailed diagram showing all the pin connections.
6. Implement the circuit in hardware, using the TTL devices from the parts list.
7. Compare the results of the two approaches with respect to the timing characteristics of the

outputs.

callmen
Rectangle

ECE 332 Experiment 4

 38 1/6/05

Experiment 4

Due to uncertain economic times, you as the chief engineer of Patriot Enterprises, have decided
to diversify your product line. Your first circuit is to be a combinational circuit to illuminate
three lights indicating the status of the oil level in an automobile engine. The engine is capable of
holding 7 liters of oil, but has a tendency to pull oil into the intake manifold when the level is
equal to or greater than 6 liters. At the other extreme, it has been determined that an oil level of
less than 2 liters does not insure that there is a sufficient supply of oil to the oil pressure pump.
For proper, safe operation, the engine should have an oil level between these two extremes. In
order to simplify the information for the average driver, you have decided to make an indicator
with three lights Red, Green, Yellow. These lights are to be illuminated under the following
conditions:

• Red Light: Oil level greater than 5 or less than 2 liters.
• Yellow Light: Oil level greater than 4 or less than 3 liters.
• Green Light: Oil level equal to 3 or 4 liters.

More than one light may be on at a time.

You have also found that there is a commercially available oil level indicator that has a binary
output proportional to oil level as in the table below:

 Output Signal Lines
(Oil Level)

mt A B C

Oil Level
(liters)

 0 0 0 0

 0 0 1 1

 0 1 1 2

 0 1 0 3

 1 1 0 4

 1 1 1 5

 1 0 1 6

 1 0 0 7

callmen
Rectangle

ECE 332 Experiment 4

 39 1/6/05

1. Design a combinational circuit to perform the functions described above.
2. Minimize the functions using any appropriate method.
3. Write a VHDL behavioral description to implement the circuit, including the following

a. Entity declaration
b. Behavioral architecture body
c. An appropriate testbench

4. Simulate and print the resulting waveforms for all possible inputs.
5. Draw a detailed diagram showing all the pin connections.
6. Implement the circuit in hardware, using the TTL devices from the parts list.
7. Compare the results of the two approaches with respect to the timing characteristics of the

outputs.

callmen
Rectangle

ECE 332 Experiment 4

 40 1/6/05

1. Design a combinational circuit to perform the functions described above.
2. Minimize the functions using any appropriate method.
3. Write a VHDL behavioral description to implement the circuit, including the following

a. Entity declaration
b. Behavioral architecture body
c. An appropriate testbench

4. Simulate and print the resulting waveforms for all possible inputs.
5. Draw a detailed diagram showing all the pin connections.
6. Implement the circuit in hardware, using the TTL devices from the parts list.
7. Compare the results of the two approaches with respect to the timing characteristics of the

outputs.

callmen
Rectangle

ECE 332 Experiment 5

 41

7. Exercise the redundant terms with the test bench and verify that the static 1-hazard has been
removed.

8. Implement f1 with physical gates and capture the transient 0 which occurs when C switches
from a 1 to a zero.

callmen
Rectangle

ECE 332 Experiment 6

 42 1/6/05

Experiment 6

MSI Circuit for Cold Switching Signals

It is sometimes awkward in an electronic instrument to have the switches on the front panel
directly control the routing of signals (called ``hot switching'') among circuits for several
reasons. In hot switching, the signals have to be routed to the front panel for switching which
introduces delays in the signal due to the length of the wire and possibly noise, not to mention
the greater number of wires which must leave one board and be routed back to the board. The
single largest source of failures in electronic circuits is connections.

A technique for time-division multiplexing signals can be used to alleviate this problem and
serve to introduce "cold switching." In cold-switching, front panel switches indirectly redirect
data signals by sending control signals from the switches to a circuit on the signal processing
board which actually routes the signals from/to the desired processing circuit. This means that
the data signal never leaves the circuit board and is therefore incurs no additional delay and is
less susceptible to noise. Not only that, but by this method, 3 control lines can redirect 8 data
lines thereby reducing the number of wires which must be used to connect the front panel to a
signal processing board. The example presented here is used for routing digital signals, but the
process is directly analogous for the routing of analog signals using digital control signals.

Time-division multiplexing means that multiple signals are transmitted over the same wire, but
not at the same time as can be done with frequency-division multiplexing or other methods. The
signal which is to be sent over the single data wire is specified by a set of n control signals,
where 2n is the number of signals which can be multiplexed. At the other end of the multiplexed
signal data wire is a demultiplexer which selects which of the 2n output signal lines to route the
signal to. It is assumed here that the same address (control signals) is applied to both the
multiplexer and demultiplexer.

With reference to the above problem do the following

1. Simulate and verify a multiplexer:

a. Write a structural VHDL description of an 8-to-1 multiplexer.
b. Demonstrate using a test bench that the output signal is the same as the selected input

signal. Do this for all eight input signal lines.
2. Simulate and verify a demultiplexer:

a. Write a structural VHDL description of a 1-to-8 demultiplexer.
b. Demonstrate using a test bench that the input signal is routed to the correct output. Do

this for all eight output signal lines.
3. Simulate and verify the complete TDM circuit:

a. Write a structural VHDL description of an 8-to-1 multiplexer connected to a 1-to-8
demultiplexer.

callmen
Rectangle

ECE 332 Experiment 6

 43 1/6/05

b. Write a testbench with a counter to drive the control lines of both the multiplexer and the
demultiplexer. Demonstrate the proper operation of the digital TDM circuit by verifying
that the correct input signal is routed to the proper output.

4. Build an MSI implementation of the complete TDM circuit using parts from the ECE332
parts list and compare it to the TDM simulation.

E

callmen
Rectangle

ECE 332 Experiment 7

 44 1/6/05

Experiment 7

Integrated Circuit Technology Lab

As a digital systems designer, you will need to be aware of the electrical characteristics of
various logic families, because a design must be logically and electrically correct to ensure
proper operation. Even if a design is logically correct, it may fail to operate correctly if the
design violates electrical limitations and usage rules of a particular logic family.

In this lab you will do a comparative study of the 74LS00 Quad 2-input AND gate and the
74C00, a CMOS version of the same device.

1. Using the respective datasheets for the two devices, determine the following electrical

characteristics and compare the results for the TTL and CMOS families.
a. Noise Margin
b. Fan-out
c. Propagation Delay

2. Use a dual-trace oscilloscope to observe the actual propagation delays for the two devices.
Inject a square wave into the selected channel and compare the input signal with the output
signal by displaying them simultaneously on the two channels. Record your observations
and comment on the difference in behavior between the TTL and CMOS devices, as well as
the differences in observed behavior with that determined in part 1c above.

3. Based on your observed results in part 2 above, write VHDL package containing behavioral
models for both the TTL and CMOS devices. Use a generic clause to model the propagation
delay.

4. Write a VHDL structural model and associated testbench that will instantiate each device
model with the appropriate propagation delay. Simulate your VHDL model to demonstrate
that you have correctly modeled the behavior observed in part 2 above.

Hint: For the CMOS gate, output currents are named Isource and Isink. Make sure you use the
Vcc = 5V parameters.

callmen
Rectangle

ECE 332 Experiment 7

 45 1/6/05

callmen
Rectangle

ECE 332 Experiment 8

 46 1/6/05

Experiment 8

4-bit Adder-Subtractor

The circuit diagram above implements a 4-bit adder-subtractor:

SEL = 0 ⇒ Z = A+ B

SEL =1⇒ Z = A+ B +1 = A− B

1. Write a VHDL package containing behavioral descriptions of an XOR gate and a Full Adder.
2. Write a VHDL structural description to implement the circuit, including the following:

a. Entity declaration
b. Structural architecture body using generate statements for the regular structures

A B

S

CinCout

FA0

A0

Z0

SEL

B0

A B

S

CinCout

FA3

A3

Z3

B3

Cout

callmen
Rectangle

ECE 332 Experiment 8

 47 1/6/05

c. A testbench which demonstrates correct operation of the circuit with an example of each
of the following cases:

A B A + B A - B

4 2

2 5

-3 -4

-2 6

6 3

3. Simulate and print the resulting waveforms for the cases listed above.
4. Design an MSI implementation of the circuit using a 4-bit adder and draw a detailed diagram

showing all the pin connections.
5. Implement the circuit in hardware, using the TTL devices from the parts list and verify its

operation using the test vectors above.
6. Compare the results of the two approaches with respect to the timing characteristics of the

outputs.

callmen
Rectangle

ECE 332 Experiment 9

 48 1/6/05

Experiment 9

Synchronous Sequential Design

Design a synchronous sequential Moore machine which implements a 2-bit binary counter with
the following characteristics:

• An active-high enable, EN
o When EN = 1, the counter changes state
o When EN = 0, the counter maintains its current state

• An active-high control signal, UP
o When UP = 1, the counter counts up in the sequence 00, 01, 10, 11, 00, …
o When UP = 0, the counter counts down in the sequence 00, 11, 10, 01, 00, …

• An active-low asynchronous clear, CLR_BAR
o When CLR_BAR = 0, the count is reset to 00

• A falling-edge triggered clock, CLK

To complete this experiment do the following:

1. Draw a state diagram which represents the Moore machine described above.
2. Fill in the state table below for the Next States and determine Excitation Variables necessary

to implement the state machine using JK flip-flops.
3. Minimize the Boolean equations for the Excitation Variables.
4. Draw a detailed circuit diagram for the state machine, showing all pin connections.
5. Implement your circuit in hardware, using TTL parts, and verify its operation.
6. Write a VHDL structural description to implement the circuit, including the following:

a. Entity declaration.
b. Structural architecture body using components from the ece332_gates package.
c. A testbench which demonstrates correct operation of the circuit.

7. Simulate your VHDL model and print the resulting waveforms.
8. Compare the results of the two implementations.

Z1

Z0

UP

CLR_BAR

CLK

EN

callmen
Rectangle

ECE 332 Experiment 9

 49 1/6/05

 Inputs Present
State

Next
State Excitation Variables Outputs

mt EN UP Q1 Q0 Q1
+ Q0

+ J1 K1 J0 K0 Z1 Z0

0 0 0 0 0 0 0

1 0 0 0 1 0 1

2 0 0 1 0 1 0

3 0 0 1 1 1 1

4 0 1 0 0 0 0

5 0 1 0 1 0 1

6 0 1 1 0 1 0

7 0 1 1 1 1 1

8 1 0 0 0 0 0

9 1 0 0 1 0 1

10 1 0 1 0 1 0

11 1 0 1 1 1 1

12 1 1 0 0 0 0

13 1 1 0 1 0 1

14 1 1 1 0 1 0

15 1 1 1 1 1 1

callmen
Rectangle

ECE 332 Experiment 10

 50 1/6/05

Experiment 10

Shift Register

Design a 4-bit parallel input / parallel output shift register with the following characteristics:

• An mode control signal, SEL
o When SEL = 0, the register loads Di
o When SEL = 1, the register shifts right (and Q3 receives SR_IN)

• A rising-edge triggered clock, CLK

To complete this experiment do the following:

1. Draw the circuit diagram for the shift register described above, using D flip-flops and

2 to 1 multiplexers.
2. Implement your circuit in hardware, using TTL parts, and verify its operation.
3. Write a VHDL behavioral description which implements this shift register, including the

following:
a. Entity declaration
b. Dataflow architecture body
c. An appropriate testbench

4. Simulate your VHDL model and print the resulting waveforms.
5. Compare the results of two implementations.

Q3

SR IN

SEL

D3

CLK

D2 D1 D0

Q2 Q1 Q0

callmen
Rectangle

ECE 332 Experiment 10

 51 1/6/05

callmen
Rectangle

ECE 332 Experiment 11

 52 1/6/05

Experiment 11

Asynchronous Finite State Machine

Given the following characteristic equations for the next state variables of an asynchronous finite
state machine:

Y1 = x1x 2 + y2x 1 + y1y 2x2

Y2 = x1 + y2 x 2

1. Determine the transition table and identify the stable states.
2. Identify any oscillations and races and indicate their types.
3. Write a VHDL behavioral description which implements the characteristic equations and

includes the following:
a. Entity declaration
b. Behavioral architecture body
c. An appropriate testbench

4. Simulate and Print the resulting waveforms for all possible inputs and state transitions.
a. Set the propagation delays of Y1 and Y2 to demonstrate normal operation.
b. Adjust the propagation delays to demonstrate the results of a critical race.

5. Draw a detailed diagram showing all the pin configurations.
6. Implement the above circuit in hardware, using the TTL devices from the parts list.
7. Compare the results of two approaches with respect to the timing characteristics of the

outputs.

callmen
Rectangle

ECE 332 Experiment 11

 53 1/6/05

callmen
Rectangle

ECE 332 Experiment 12

 54 1/6/05

Experiment 12

Aquarium Controller

As chief engineer of AQUA (Pronounced "AquaNot") Aquarium Maintenance Engineering, Inc.,
you have decided to develop an automatic device to control the acidity (pH) and Calcium content
of the water in fish aquariums. You also want to use this device to automatically feed the fish on
a regular basis.

You have decided to purchase devices that measure the pH and Calcium content and use them as
inputs to your system. The pH measuring device has an output pH which is asserted as (1) when
the pH is too high requiring the introduction of a measured amount of buffering agent into the
aquarium to lower the pH. The Calcium measuring device has an output (pC) which is asserted
as (0) when the calcium level is too low requiring the introduction of a measured amount of
Calcium into the aquarium. You will use these two measurement devices as inputs to your design
to determine whether to actuate the output devices.

The first of the three output devices introduces a measured amount of buffering solution (B) into
aquarium to lower the pH of the water. The second output device introduces a measured amount
of calcium (C) into the water to raise Calcium levels. The simultaneous introduction of the
buffering solution and calcium cannot be allowed since they may cancel the effects of each other.
You have decided that pH control is more important than Calcium control, so that if both pH and
pC sensors indicated that the buffer and calcium must be introduced at the same time, you will
only introduce the buffer into the water during that cycle.

There is, of course, a third (output) device (F) which dumps food into the aquarium. Through
experience you have found that you cannot put fish food into the tank at the same time that you
put in any chemicals. Experience has also shown that, if possible, it is more important to control
pH and pC than to feed the fish. it is well known that the breed of fish you have in the tank
cannot miss more than two feeding cycles before they are adversely affected.

Remembering that this type of problem can be reasonably solved using a synchronous finite state
machine of the Mealy type, it further seems reasonable that this can be done in three states where
the first one (01) indicates that the fish were fed on the last cycle, the second (10) indicates that
the fish have missed one feed cycle and the third (11) state which indicates that the fish have
missed a second feed cycle.

With reference to the above word problem do the following:

1. Draw a properly labeled and complete state diagram of the Mealy machine to implement the

aquarium controller.
2. Fill in a State/Output table for the Mealy machine.

callmen
Rectangle

ECE 332 Experiment 12

 55 1/6/05

3. Write a VHDL Behavioral Description which implements the finite state machine, including
the following
a. Entity declaration
b. Behavioral architecture body
c. An appropriate testbench

4. Simulate and print the resulting waveform for all possible inputs and state transitions.
5. Determine whether the FSM is self-starting and verify this by starting the FSM in state 0.

callmen
Rectangle

ECE 332 Bonus Experiment

 56 1/6/05

Bonus Experiment

Variable Modulus Counter

Design a variable modulus counter with the following characteristics:

• An active-high enable, EN
o When EN = 1, the counter changes state
o When EN = 0, the counter maintains its current state

• A modulus control signal, SEL
o When SEL = 1, the counter counts up in the sequence 6, 7, … ,10, 11, 6, …

(modulus = 6)
o When SEL = 0, the counter counts up in the sequence 3, 4, … ,10, 11, 3, …

(modulus = 9)
• An active-low synchronous reset, RESET_BAR

o When RESET_BAR = 0, the count is reset to its lowest value, depending on the
modulus (controlled by SEL)

• A rising-edge triggered clock, CLK

To complete this experiment do the following:

1. Draw the circuit diagram for the variable modulus counter described above.
2. Implement your circuit in hardware, using TTL parts, and verify its operation.
3. Write a VHDL structural description to implement the circuit, including the following:

a. Entity declaration.
b. Structural architecture body using components from the ece332_gates package.
c. A testbench which demonstrates correct operation of the circuit.

4. Simulate your VHDL model and print the resulting waveforms.
5. Write a VHDL behavioral architecture to implement the variable modulus counter.
6. Simulate your VHDL model and print the resulting waveforms.
7. Compare the results of the three implementations.

Q0

SEL

RESET_BAR

CLK

EN

Q1

Q2

Q3

callmen
Rectangle

