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In many networks of interest �including technological, biological, and social networks�, the con-
nectivity between the interacting elements is not static, but changes in time. Furthermore, the
elements themselves are often not identical, but rather display a variety of behaviors, and may come
in different classes. Here, we investigate the dynamics of such systems. Specifically, we study a
network of two large interacting heterogeneous populations of limit-cycle oscillators whose con-
nectivity switches between two fixed arrangements at a particular frequency. We show that for
sufficiently high switching frequency, this system behaves as if the connectivity were static and
equal to the time average of the switching connectivity. We also examine the mechanisms by which
this fast-switching limit is approached in several nonintuitive cases. The results illuminate novel
mechanisms by which synchronization can arise or be thwarted in large populations of coupled
oscillators with nonstatic coupling. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2979693�

Recently, a great deal of attention has been paid to net-
works of interacting components in physical, biological,
technological, social, and other contexts.1 Most of this
work assumes that the connectivity of the network of in-
terest is static. However, in real networks of such units
(i.e., physical, biological, social, etc.), communication
among the individual components is often not indepen-
dent of time. The coupling strength, the type of coupling,
and the connection topology may not necessarily remain
constant, and the rate of change of connectivity may
range from slow to fast. Here, we use a recently published
model system8 consisting of a network of two interacting
populations of oscillators to examine the dynamical con-
sequences of time-varying connectivity. Specifically, our
system consists of two interacting populations of globally
coupled heterogeneous limit-cycle oscillators (Kuramoto
systems) in which the relative strengths of the intra- and
interpopulation couplings are specified by a two-by-two
matrix. Knowledge of this matrix is sufficient to deter-
mine whether or not the system will exhibit collective syn-
chronous behavior. We introduce time-dependent connec-
tivity by alternately switching the coupling matrix
between two specified matrices at a fixed frequency. We
show that as the frequency of switching increases, the
network’s behavior approaches that of a nonswitching
network described by the time-averaged connectivity. In
addition, we examine the mechanisms by which this fast-
switching limit is approached in several nonintuitive
cases. Our results extend previous results reported in the
literature3–5 to both systems of heterogeneous elements

and to systems consisting of multiple subpopulations. Im-
portantly, our results illuminate novel mechanisms by
which synchronization may arise or be thwarted as a re-
sult of interpopulation dynamics, and we explain these
mechanisms in terms of the interactions between the or-
der parameter phasors corresponding to each population.
We believe that these mechanisms are broadly relevant in
light of recent results8,14 indicating that many networks
of interest consist of interacting clusters or communities
of elements.

I. INTRODUCTION

An early example of work considering time-dependent
coupling cited possible applications in communication and in
spike-coupled networks.2 These authors considered the
asymptotic stability of a unidirectionally coupled pair of
identical systems in which the state variables involved in the
coupling were periodically reset to new values. It was proven
that if the frequency of this driving is high enough and the
continuously driven system is asymptotically stable, then the
periodically driven system is also asymptotically stable.

In more recent work, the authors of Refs. 3 studied syn-
chronization in a population of chaotic dynamical systems
with time-dependent connectivity using a master stability
function framework. The stated motivation of these authors
was, in part, the study of disease propagation in social net-
works and the coordinated control of platoons of autono-
mous vehicles. A similar approach was used in Ref. 4. Mean-
while, the authors of Ref. 5, citing both neurobiological and
technological motivations �such as the synchronization of
clocks over the internet�, considered synchronization in time-
dependent small-world networks using a Lyapunov function
approach. In their formulation, random small-world connec-
tions were added to a pristine nearest-neighbor network of
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dynamical systems as in the usual case, but the small-world
connections were removed and reassigned periodically in
time. In all these references, the authors showed that if the
connection switching in their respective systems occurs
quickly enough, their systems behave as if the coupling were
static and equal to the time average of the switching connec-
tivity.

The stability analysis that leads to these results relies on
the assumption that the network consists of a single popula-
tion of identical elements. In this paper, we consider syn-
chronization in time-dependent networks of more than one
population of heterogeneous elements. We draw motivation
from the observation that the individual elements of a neu-
robiological network are never homogeneous. In fact, there
is a great variety of different classes of neurons, each of
which has its own diverse repertoire of behavior. The same
can be said of proteins in metabolic networks, individuals in
social networks, etc.

The paradigm for the study of synchronization in a het-
erogeneous network of oscillators is the Kuramoto system.6

This consists of a large �or infinite� population of limit cycle
oscillators in which the natural unperturbed frequency for
each oscillator is drawn at random from a given distribution
function. When uncoupled, these oscillators behave incoher-
ently. But with sufficiently strong coupling, coherent collec-
tive behavior spontaneously emerges—that is, the oscillators
synchronize. Kuramoto assumed a particular form for the
oscillator interaction and was able to analytically determine
the critical value of coupling for the onset of synchroniza-
tion. This model, though rather abstract, has been enor-
mously influential and has found many applications.7

In this paper, we consider the synchronization properties
of multipopulation networks that are heterogeneous and have
time-dependent coupling. We show that the fast-switching
results described above are also valid in a more general het-
erogeneous context. The analysis presented here builds on,
and is made possible by, previous results in which criteria for
the onset of synchronization in a network-of-networks refor-
mulation of the Kuramoto system with static connectivity
were derived.8

The paper is organized as follows. In Sec. II, we briefly
review the relevant previous results of Ref. 8, as well as
general results for homogeneous switching systems. We in-
troduce our heterogeneous switching system in Sec. III, and
differentiate between the slow and fast switching limits. Vari-
ous cases of interest are then considered in more detail. We
conclude in Sec. IV.

II. REVIEW OF PREVIOUS RESULTS

A. Synchronization criteria in static networks

In previous work,8 we obtained criteria for the occur-
rence of synchronization in a network of many interacting
populations of limit-cycle oscillators with static coupling.
We begin by reviewing the results of this work that are rel-
evant to the current paper. Consider the following system of
two interacting oscillator populations labeled � and �,

d�i

dt
= ��i + �

K��

N�
�
j=1

N�

sin�� j − �i� + �
K��

N�
�
j=1

N�

sin�� j − �i�,

i � �1,N�� ,

�1�
d�i

dt
= ��i + �

K��

N�
�
j=1

N�

sin�� j − �i� + �
K��

N�
�
j=1

N�

sin�� j − �i�,

i � �1,N�� .

Here �i and �i are the phases of the individual oscillators in
population � and �, respectively. We assume that the number
of oscillators in each population �N� for �=� ,�� is very
large, and that the natural frequencies ��i and ��i are drawn
at random from two �possibly different� distributions
G�����. � is an overall coupling strength, and the connection
matrix

K = �K�� K��

K�� K��
�

characterizes the relative strengths of the intra- and inter-
population interactions. Here, we allow the individual ele-
ments K��� within the connection matrix to be any real num-
ber. �Allowing these to be complex is equivalent to
introducing phase shifts in the sine functions of Eq. �1�.8�

Kuramoto defined a complex order parameter z which
characterizes the degree of synchronization in the oscillator
population. For our system, we use a separate order param-
eter for each population, i.e.,

z� � r�ei�� =
1

N�
�
j=1

N�

ei�j, � = �,� . �2�

Intuitively, r�= 	z�	 is the magnitude of the vector average of
all the phasors that characterize the state of each individual
oscillator in population �. If the oscillators are incoherent,
the phasors are uniformly distributed about the circle, and
r�=0. r�=1 indicates that the oscillators are perfectly syn-
chronized, and values of r� such that 0�r��1 correspond
to states of partial synchronization. �In this work, the term
“synchronization” refers to any state for which r��0.�

In the original Kuramoto system �i.e., only one popula-
tion�, the incoherent state �r=0� is observed for zero cou-
pling. As the coupling strength is increased, coherent collec-
tive behavior is not observed until a critical value of the
coupling strength is reached. Beyond this value, r increases,
indicating that the system spontaneously synchronizes.

Similar behavior is observed in our system of two inter-
acting populations, but certain details depend on the connec-
tivity matrix.8 To obtain the criteria for synchronization, one
can perform a linear stability analysis of the incoherent state,
for which the order parameters r� are zero. One considers a
small perturbation to this state and assumes that the pertur-
bation evolves exponentially in time; thus the order param-
eters are written 	r�est. If s has a negative real part, then this
perturbation decays exponentially, and the incoherent state is
stable. If s has a positive real part, then the perturbation
grows exponentially, and the incoherent state is unstable. In
this case, the system then evolves to a state that exhibits
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synchronization with r��0. The critical state for the onset of
synchronization, therefore, occurs for Re�s�=0.

For the system in Eq. �1�, a self-consistency argument
leads to the following equation for the order parameter per-
turbations:


�K − �1g��s� 0

0 1g��s�
���	r�est

	r�est� = 0, �3�

where the complex function g��s� is defined by

g��s� �
1

2
�

−



 G�����
s − i��

d��.

Equation �3� has a nontrivial solution if the determinant of
the matrix in the square brackets is zero. Given the natural
frequency distributions G����� and the connectivity matrix
K, we set Re�s�=0, and the determinant condition deter-
mines the critical value�s� of the overall coupling strength �*

for the onset of synchronization.
For the special case in which G����� are Cauchy–

Lorentz distributions with mean frequency �� and half-
width at half-maximum ��, G�����=�� / 
�����−���2+��

2��, the zero determinant condition reduces
to

��K�� − 2�iv + �� − i������K�� − 2�iv + �� − i����

− �2K��K�� = 0, �4�

where we have set s= iv with v real. Equation �4� can be
separated into its real and imaginary parts, resulting in two
equations that can be solved simultaneously for the two un-
knowns �* and v*. In general, this may require numerical
methods.8

Recently, Ott and Antonsen20 introduced a novel method
that allows one to reduce the problem in Eq. �1� �in the
thermodynamic limit� into two coupled ODEs for the two
complex order parameters. Following Kuramoto’s original
analysis, Ott and Antonsen started with the assumption that
in the limit N�→
, the oscillator network can be described
by a continuous distribution function f���� ,� , t� with
�0

2f���� ,� , t�d�=g�����. The key in this analysis was the
introduction of a Fourier ansatz for the expansion of f�, i.e.,

f� =
g�����

2
�1 + 
�

n=1




��
n���,t�ein� + c.c.�� ,

where 	����� , t�	�1 to ensure the convergence of the series.
With a few additional technical assumptions on ����� , t�, the
authors in Ref. 20 derived the following system of equations
for a multipopulation network of phase oscillators with a
Lorentzian frequency distribution:

dz�

dt
= �i�� − ���z� +

�

2 �
��=�,�

K�,���z�� − z
��
* z�

2� , �5�

where �=� ,�. Equations �4� and �5� provide two alternative
ways to analyze the coherence of two interacting populations
of phase oscillators with static coupling.

In this paper, we set ��=��=� and ��=��=�, i.e., the
oscillator frequencies for each population are drawn from
identical distributions. � can be set to zero without loss of

generality, and we also assume that the intrinsic properties of
the oscillators do not change in time. In this case, an explicit
solution to Eq. �4� can be easily expressed in terms of the
trace T and determinant D of the connection matrix K, and
�. The solutions appear in Table I. Thus, we have a complete
understanding of the criteria for synchronization in the sys-
tem of Eq. �1�. Given any connection matrix K, overall cou-
pling strength �, and the oscillator frequency distributions
G�����, we can determine if the system will synchronize or
not. We conclude this section by drawing attention to one
particular result that we will use later. If one adopts the as-
sumptions described above �i.e, identical Cauchy–Lorentz
frequency distributions�, it can be shown �see Table I� that
synchronization does not occur for any value of � if the
connection matrix is traceless �tr�K�=0� and has a determi-
nant greater than or equal to zero �det�K��0�.

B. Switching networks

In the above discussion, the connection matrix and the
coupling strength for the network are assumed to be static.
For this study, we are interested in relaxing this assumption.
For example, one can define a time-dependent system ẋ�t�
= f��t��x�t�� in terms of a switching sequence ��t� :R
→S�Z+. Here, x�t� is the n-dimensional state vector. At
each instant of time, its time evolution is determined by f��t�,
in which ��t� selects a particular function f i from a collection
f1 , f2 , ¯ �.

In the simple situation in which this collection consists
of linear systems such that the individual f i are constant ma-
trices Ai, there is a wealth of established results concerning
the stability of the switched system’s equilibrium state.9–13 In
the most straightforward scenario, if the individual matrices
Ai are all stable �i.e., all of their eigenvalues are negative�, it
can be shown that the switched system is stable if the switch-
ing is relatively slow. Intuitively, if the dwell time for each
Ai is longer than the largest characteristic decay time of all
the Ai’s, then the system will spend most of the time very
close to the corresponding stable equilibrium states. If the
switching sequence is faster, one can often find a common
Lyapunov function for all the Ai, and therefore prove that the
switched system is again stable.9 In this situation, one can
envision the trajectory of the switched system hopping

TABLE I. Formulas for �*.

Condition �*

T2�4D ��T��T2−4D

D �
T2�4D 4�

T

D=0 2�

T

T=0, D�0 �
2�

�−D

T=0, D�0 no solution
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within a piecewise linear “potential well� such that the con-
stituent pieces form a bowl shape with a local minimum at
the equilibrium location.

Going one step further, consider the more natural case in
which some or all of the Ai’s within the switching set are not
stable. It is still possible to have stability in the switched
system if the switching sequence is chosen appropriately. In
particular, an interesting fast-switching result exists. For
some classes of linear systems with the following time pa-
rametrization: ẋ�t�=A��t/��x�t�, where ��0, the switched sys-
tem can be shown to be asymptotically stable for sufficiently
small � if the time-average system given by ẋ�t�= �A�x�t�,
where �A�=limT→
1 /T�0

TA��t�dt, is also asymptotically
stable.10–12 A similar result was proven for certain nonlinear
systems,13 and this fast-switching result has also been ex-
tended recently to the stability of the synchronized state of a
population of homogeneous nonlinear oscillators in Refs. 3
and 5. This fast-switching result is interesting in the sense
that even though the individual static network dynamics do
not inherently support synchrony by themselves, the fast-
switching system can nevertheless synchronize, as long as
the time-averaged static system can be shown to support syn-
chrony.

III. HETEROGENEOUS SWITCHING NETWORKS

A. Our system

Our current effort aims to investigate the behavior of a
switching network with heterogeneous elements. To this end,
we construct a time-varying network based on our many-
population model of phase oscillators, Eq. �1�, by using the
following connection matrix:

K��t� = �K��,��t� K��,��t�

K��,��t� K��,��t�
� , �6�

where ��t� :R→ A ,B� is a binary switching sequence such
that

��t� = �A, t � �m�,�m + 1��� , where m is even,

B, t � �m�,�m + 1��� , where m is odd.
� �7�

Thus, the time-dependent connection matrix K�t� alternates
between KA and KB with a frequency f =1 / �2�� Hz. Note
that each matrix is “in effect” for equal amounts of time � �in
seconds�.

B. Fast and slow switching regimes

The complex order parameter z�=r�ei�� introduced in
Sec. II A is a measure of the collective coherence of the
network and can be interpreted as the centroid of all phase
variables within the population. If the switching is suffi-
ciently frequent, z� is approximately constant during the
dwell time � for which each static matrix is “in effect,” and
we have

z��t� � �z��t�� , �8�

where �z��t���1 /2��t
t+2�z��t��dt� is the time-averaged order

parameter over one complete switching cycle. While this
condition holds for sufficiently fast switching, Eq. �8� is not

sufficient to define the fast-switching regime. For example, if
the coupling strength � and the connection matrices are such
that the network remains incoherent, Eq. �8� holds even for
slow switching.

To better distinguish the two regimes, we define a char-
acteristic time �*. Based on the linearization described in
Sec. II A, we expect a perturbed order parameter to approach
its asymptotic value exponentially, i.e., �est. Thus, we use
�*=1 /Re�s� as a rough estimate of how fast the network can
respond to the perturbations that arise from switching. Using
this definition, a switching network is in the “slow regime” if
the static matrix dwell time � is larger than the largest char-
acteristic time for the connection matrices KA and KB, i.e.,
��max��

A
* ,�

B
*�. In other words, under slow switching, the

order parameters have sufficient time to change appreciably
�if they are not already at their asymptotic values� before the
next switching event occurs. For fast switching, �
�max��

A
* ,�

B
*�; in this case, the order parameters do not have

time to change appreciably before the next switching event
takes place.

By taking the time average of the dynamical equations
for the order parameters in Eq. �5� over one complete switch-
ing cycle, and assuming fast switching conditions so that Eq.
�8� holds, we have

dz�

dt
= �i�� − ���z� +

�

2 �
��=�,�

�K�,����z�� − z
��
* z�

2� , �9�

where �=� ,�. Thus, for sufficiently fast switching, it is
clear that the macroscopic behavior of the switching network
described by Eqs. �1�, �6�, and �7� is explicitly controlled by
the “static” average connection matrix,

�K� = ��K��,��t�� �K��,��t��

�K��,��t�� �K��,��t��
� = �KA + KB�/2.

In the following, we examine how the switching system tran-
sitions to this fast-switching behavior in several nonintuitive
cases.

C. Transition from incoherence to coherence
under fast switching

In our first example, we consider the situation in which
neither KA nor KB support synchrony under static �non-
switching� conditions, while the average matrix �K� does
�under static conditions�. In this case, the occurrence of syn-
chronization in the “fast-switching” system is perhaps sur-
prising: it may seem counterintuitive that switching between
matrices that do not separately support synchronization un-
der static conditions can nevertheless lead to synchronization
if the switching frequency is fast enough. In fact, we do
observe this behavior, and we describe the mechanism that
gives rise to it below.

Under slow switching, the switching system remains in
the incoherent state �r�=0�. We wish to show that the char-
acteristic time �* calculated from the linearized incoherent
state gives an accurate prediction for the critical frequency
for the fast switching regime. From the discussion in Sec.
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II A, the linear stability s of the incoherent state for a �static�
matrix K can be directly calculated by setting the determi-
nant of the matrix in Eq. �3� to zero, i.e.,

det
�K − �1/g��s� 0

0 1/g��s�
�� = 0. �10�

Using Cauchy–Lorentz distributions for G�����, one can ex-
plicitly calculate the contour integral in the complex function
g��s�,

g��s� =
1

2
�

−



 G�����
s − i��

d�� =
1

2�s + ��� − i��

.

Substituting g��s� back into Eq. �10� and setting ��=��=�
and ��=��=�, one can solve the resultant complex qua-
dratic equation for s. The solution,

s�K,�� = 1
4 �− 4� − �Tr�K� � ��Tr2�K� − 4 det�K� + 2i�� ,

�11�

gives the linear stability of the incoherent state of the net-
work with a given static connection matrix K and coupling
strength �.

To develop a concrete example, recall from Sec. II A
that for static traceless connection matrices and G�=G�, syn-
chronization is possible for an appropriately selected value
of � as long as the determinant of the connection matrix is
negative. If the determinant is positive, synchronization is
not possible for any �. Accordingly, we choose the traceless
matrices

KA = �c − a

a − c
� KB = � c a

− a − c
� , �12�

where a and c are real numbers. Then, if a2�c2, we have
det�KA��0 and det�KB��0, and neither matrix supports
synchrony under static conditions for any value of �.

In the example below, we use a=2, c=1, �=1, and �
=0. Substituting these values into Eq. �11� gives

s�KA� = s�KB� = − � � i
�3

2
� .

Therefore, for any choice of �, the incoherent states �r�

=r�=0� for this set of connectivity matrices are exponen-
tially stable with a characteristic decay time inversely pro-
portional to �, the width parameter of the frequency distri-
bution of the phase oscillators. That is,

�* = 1/	Re�s�	 = 1/� . �13�

Based on the arguments above, we expect that for
switching frequencies larger than 1 /�*=�, the time evolu-
tion of the switching network should be close to that of a
static network with connectivity matrix �K�= � c 0

0 −c
�. Note that

in this particular case, �K� is diagonal, so that the corre-
sponding static network consists of two independent simple
Kuramoto systems with coupling c� and −c�. For ���*
=2 /c, the � population will synchronize, and the � popula-
tion will not. We now examine the behavior of the switching
system as this fast-switching limit is approached.

Figure 1�a� shows the time-averaged asymptotic order

parameter �r�� for the synchronizing population ��� as the
switching frequency is varied. �For all our numerical ex-
amples, our population size is 10 000 or more to minimize
fluctuations.� The curves represent various values of the
overall coupling strength � as listed in the figure legend. For
weak coupling ����*=2�, the time-averaged order param-
eters remain small for all values of the switching frequency.
Then, for sufficiently strong coupling ����*=2�, the �
population transitions from incoherence to coherence at the
predicted critical frequency f*=1 /�*=�=1 Hz, and the ex-
pected fast-switching behavior is immediately apparent. Note
that the transition occurs at the same critical frequency for all
the curves in Fig. 1�a�, in accordance with the prediction that
f*=� is independent of �. To test the dependence on �, we
repeated the experiment for various values of �. The time-
averaged asymptotic order parameter �r�� for the � popula-
tion is plotted as a function of frequency in Fig. 1�b� for
various values of � and ���*. As predicted, the population
transitions from incoherence to coherence at the critical fre-
quencies given by f*=�.

In Figure 2�a�, we examine the behavior of the other
population ��� as the switching frequency is varied. Again,
the curves correspond to various coupling strengths, and it
can be seen that for ���*=2, the time-averaged asymptotic
order parameter �r�� rises, reflecting a modest amount of
synchrony in this population, and then gradually falls with
increasing switching frequency. The latter behavior is ex-
pected, since �K� is diagonal, and the � population should be

(b)

(a)

FIG. 1. Incoherence to coherence: �a� The time-averaged order parameters
�r�� vs the switching frequency f for the � population with �=1 and a range
of � values �see legend�. �b� The dependence of the critical transition for
three different sets of parameters: ��=1, �=4; �=1.5, �=5; and �=2, �
=5.5�.
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incoherent in the fast-switching limit. However, the occur-
rence of synchrony for intermediate switching frequencies
near f*=1 /� is perhaps surprising. This can be understood
by considering graphs of the order parameter magnitudes
versus time as shown in Figs. 2�b� and 2�c� for �=4. Panel
�c� shows a segment of the data in panel �b� on an expanded
time scale. It can be seen that the order parameter for the �
population �black curve� approaches a high value and fluc-
tuates about it with small amplitude; note that this behavior
is consistent with Eq. �8�. The order parameter for the �
population �gray curve�, however, undergoes very large fluc-
tuations that extend down to zero, and therefore does not
satisfy Eq. �8�.

These excursions through zero are due to the effects of
the off-diagonal elements of KA and KB. Because the dwell
time � is not small, a non-negligible synchronizing signal
from the � population is fed into the � population, counter-
acting the negative desynchronizing signal that is present due
to the intrapopulation coupling. These dynamics can be con-
veniently described in terms of the order parameter phasors.
An examination of these phasors �not shown� reveals that
whereas the � phasor retains a large magnitude, the � phasor
makes excursions back and forth through zero: at every

switch, it shrinks to zero and then grows again, alternating
between an in-phase �0 radians� and an antiphase � radians�
relationship with the � phasor.

As the frequency increases, r� remains large. Mean-
while, r� fluctuates about zero, but with progressively less
time to grow between switches. As long as the dwell time �
is long enough for the synchronizing signal from the � popu-
lation to have an effect, there will be some degree of syn-
chronization in the � population. Therefore, the expected
fast-switching limiting behavior of the � population requires
a higher switching frequency in order to become evident.

The particular case presented above is special in that the
matrices involved are all traceless. This provides a conve-
nient illustrative example that takes advantage of the fact that
synchronization in a network with a static traceless matrix
hinges on the determinant of the matrix, as described above.
We also examined a more generic class of matrices where
Tr�K��0. Although we do not present those results here, the
fast-switching results described above also hold for this more
general situation.

D. Transition from coherence to incoherence
under fast switching

In this section, we will examine the reverse situation in
which both KA and KB support coherence in the static con-
dition. For this case, we again confirm that the network dy-
namics in the fast switching regime behave according to the
time-averaged connection matrix �K�, and the transition to
this fast-switching limiting behavior also reveals interesting
order parameter phasor dynamics.

For our numerical experiments, we again consider trace-
less matrices. Specifically, we choose

KA = �a − c

c − a
� KB = �− b − c

c b
� , �14�

where a, b, and c are arbitrary real numbers. Choosing a
=b and requiring a2�c2 ensures that KA and KB have nega-
tive determinants. Then, referring to Table I, choosing 	�	
�2� /�a2−c2 ensures that the corresponding static networks
synchronize. Meanwhile, the average matrix

�K� = �0 − c

c 0
�

is also traceless, but has a positive determinant for all c2

�0. Thus, while KA and KB each support synchrony under
static conditions, �K� does not.

In the following, we use a=b=�2, c=1, and �=4. As in
our previous example, we have set �=1 and �=0. Solving
for the equilibrium states in the static condition using Eq.
�5�, we obtain the values reported in Table II.

To illustrate the fact that the switching system transitions
from coherence to incoherence when the switching fre-
quency is sufficiently fast, we perform the following numeri-
cal experiment, illustrated in Fig. 3. First, we integrate our
system using connectivity matrix KA under static, nonswitch-
ing conditions until the order parameters settle at their
asymptotic values given in Table II. Then, at t=0, we initiate
fast switching at f =2.6 Hz. The graph shows that the order

FIG. 2. Incoherence to coherence: �a� The time-averaged order parameters
�r�� vs the switching frequency f for the � population with a range of �
values �see legend�. �b� The time course of the instantaneous order param-
eters r��t� in the fast switching regime �f =2 Hz, �=4, r��t�—upper black
curve, r��t�—lower gray curve�. �c� A magnification of �b� on an expanded
time scale. Note the large oscillations in the frustrated order parameter
r��t�—lower �gray� curve.
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parameters undergo a few oscillations and quickly decay to
zero, confirming that the incoherent state is indeed attracting
in the switching network. We include in Fig. 3 the behavior
exhibited by a nonswitching network with connectivity ma-
trix �K� initiated in the same way �dotted curves�. It can be
seen that the oscillations follow the dotted curves rather well,
indicating that the transient behavior of the switching system
is consistent with that of the average nonswitching system.
One should also note that the characteristic time for the con-
vergence of the network toward the incoherent state is con-
sistent with the calculated linear stability of the incoherent
state �see Table II� for the static average matrix �K�, i.e.,
�*�	1 /Re�s�	=1 /�=1 s.

Next, we calculate the time-averaged order parameters
once transients have passed, and plot the results versus fre-
quency. This is shown in Fig. 4. One can see that as the
switching frequency increases, the degree of coherence
within the populations gradually decreases and vanishes for
switching frequencies larger than a critical value f* at ap-
proximately 1.1 Hz.

We note that the linear stability theory used in the pre-
vious section led to a good prediction of the critical fre-
quency because the order parameters remained close to their
asymptotic values �i.e., the incoherent state with r�=0� at
each switch. However, this is no longer true in the present
case: immediately after a switch, the order parameters are far
from the asymptotic values that correspond to the currently

TABLE II. Coherence to incoherence transition: List of equilibrium states
and their stabilities.

KA r�=0.670 75
r�=0.338 92
	��−��	=0

s=−2.4215�0.384 28i
KB r�=0.338 92

r�=0.670 75
	��−��	=

s=−2.4215�0.384 28i
�K� r�=r�=0

s=−��� /2i

FIG. 3. Coherence to incoherence transition: Transient behavior of the order
parameters r��t� in time. The connectivity matrix KA is in effect for t�0.
For t�0, fast switching takes place �f =2.6 Hz�. The dotted lines represent
the order parameters of the corresponding static average network initialized
in the same manner. Black curves, r�; gray curves, r�.

FIG. 4. Coherence to incoherence transition: The time-averaged order pa-
rameters �r�� vs switching frequency f . No appreciable synchronization is
observed for f �1.1 Hz. Black triangles, r�; gray circles, r�.

(b)

(a)

(c)

FIG. 5. Coherence to incoherence transition: The order parameters r��t� vs
time for switching frequencies �a� f =0.25 Hz, �b� f =0.90 Hz, and �c� f
=1.80 Hz.
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active connectivity matrix. This can be seen in Figs.
5�a�–5�c�, in which we plot the instantaneous order param-
eters versus time for three different switching frequencies.
For the slow switching in �a�, each order parameter alternates
between approaching a highly synchronized asymptotic state
�high r�0.670 75� and a less synchronized asymptotic state
�low r�0.338 92� as given in Table II. An important feature
is that when a population is in its more synchronized
asymptotic state, the next switch causes the order parameter
to decay immediately down to zero, indicating that the popu-
lation becomes completely desynchronized. The population
then reorganizes itself and the order parameter increases
again as the population approaches its less synchronized
asymptotic state. Due to this process, the order parameters
fluctuate significantly within the duration of one complete
switching cycle, and the “fast switching” condition of Eq. �8�
is not satisfied.

As the switching frequency is increased, the transients
are shortened. In Fig. 5�b�, the order parameters are not able
to reach their asymptotic equilibrium states before the next
switch takes place. However, transient desynchronization be-
tween switches still occurs, as the order parameter excur-
sions to zero described above are still evident. In Fig. 5�c�,
the higher switching frequency has essentially eliminated all
transients, and because the excursions to zero persist, the
order parameters hover close to zero.

This behavior, especially the excursions to zero, can be
understood by examining the phases �� of the complex order
parameters r�ei�� �see Eq. �2��. Recall that in the original
Kuramoto system, there is only one population of oscillators.
Consequently, the order-parameter phase � is not important,
since one can always move to a corotating frame in which �
is zero. This is equivalent to choosing the natural frequency
distribution G��� such that it is centered at zero. But because
our system has two interacting populations of oscillators, the
two order parameter phases can have a nontrivial relation-
ship.

Figure 6 shows a sequence of diagrams illustrating the
asymptotic states of the complex order parameters corre-
sponding to Fig. 5�a�. These order parameters are drawn as
phasors on a unit circle where the lengths and angular orien-

tations of the phasors are given by r� and ��, respectively.
When KA is in effect ��a� and �c��, the phasors settle into an
in-phase state ���−��=0�, and when KB is in effect ��b� and
�d��, the phasors settle into an antiphase state �	��−�� 	 =�.
Thus, for sufficiently low-frequency switching, the switching
system cycles among these four states. We draw attention to
the evolution of the phasors. When a switch occurs, the
shorter phasor grows—see the white phasor in transitions
�a�→ �b� and �c�→ �d�, and the black phasor in transitions
�b�→ �c� and �d�→ �a�. Meanwhile, the longer order-
parameter phasor shrinks to zero, reflecting the active desyn-
chronization of this population, and then reemerges “on the
other side,” with a different phase relative to the other pha-
sor. This is observed in the black phasor for transitions �a�
→ �b� and �c�→ �d�, and in the white phasor for transitions
�b�→ �c� and �d�→ �a�. Thus, taking note of the order-
parameter phases as in Fig. 6 reveals that a complete cycle of
the switching system actually consists of four states and has
a duration of 4�. �If one only considered the order-parameter
magnitudes as in Fig. 5�a�, one might erroneously conclude
that a complete cycle consists of two states and is completed
in time 2�.�

On the other hand, notice that if one observes the
asymptotic order-parameter phasor arrangement at every
other switch, i.e., at frequency 1 /2�—for example, imagine
switching between the states in Figs. 6�a� and 6�c�—then
both phasors are seen to make complete excursions through
zero. Thus, if the switching frequency is slow enough, the
phasors reorient their phases by  radians every two
switches. As the switching frequency increases, this process
continues, but there is progressively less time for the order
parameters to grow between switches. Thus, the populations
synchronize less and less for increasing switching frequency.

E. Resonance desynchronization

Lastly, we want to demonstrate that the order-parameter
interaction described in the two cases mentioned above can
create an interesting resonance phenomenon. To illustrate,
we choose our matrices so that the static �K� can support
coherence, and we again choose KA and KB as in Eq. �14�.
But for this case, we want the determinant of the average
matrix

�K� =�
a − b

2
− c

c −
a − b

2
�

to be negative. Thus, we choose a, b, and c such that
�a−b�2 /4�c2.

Figure 7 shows the asymptotic time-averaged order pa-
rameters versus switching frequency for a=5, b=2, c=1, and
�=4. As expected, the network synchronizes for both slow
and fast switching frequencies. However, as the frequency
sweeps through intermediate switching frequencies, the order
parameter decays to small values, remains small over an in-
terval �approximately 1.5–2.25 Hz�, and then increases
again.

b)a)

d)c)

FIG. 6. Incoherence to coherence transition: Asymptotic order parameter
phasors corresponding to two complete switching cycles �total time 4�� in
Fig. 5�a�.

037114-8 So, Cotton, and Barreto Chaos 18, 037114 �2008�

Downloaded 22 Sep 2008 to 129.174.150.138. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



This behavior corresponds to a resonance phenomenon
in which the switching time scale approximately matches the
phasor reorientation time scale as the phasors cycle among
the states depicted in Fig. 6. In terms of the oscillators, if the
switching time scale is approximately equal to the time scale
of active synchronization and desynchronization in the two
oscillator populations, then the system is in a “frustrated�
state and cannot appreciably synchronize. This novel desyn-
chronization mechanism, therefore, arises from the conflict-
ing tendencies of the two oscillator populations as the con-
nectivity switches back and forth, and an accurate
description of this mechanism requires not just the order-
parameter magnitudes r�, but also the order-parameter
phases ��. We call this effect “resonance desynchroniza-
tion.”

For fast switching, synchronization is seen to return in
Fig. 7 for f �2.25 Hz. Here, the resonance condition is vio-
lated, and the switching occurs so quickly that the order-
parameter phasors are unable to complete their excursions
toward zero before the next switch occurs. Thus, the
-radian phase reorientation described above does not occur.
Instead, the order parameters display a “ratcheting” behavior
that gives rise to the expected synchronization in the fast-
switching limit.

IV. CONCLUSION

In this work we show that switching networks, under
sufficiently fast switching, exhibit behavior characteristic of
a static network with the corresponding average connectivity,
extending previous results found in the literature to the case
of networks that consist of two large populations of hetero-
geneous oscillators. Furthermore, by examining the dynam-
ics of switching networks as this fast-switching limit is ap-
proached in several nonintuitive cases, we identify novel
synchronization and desynchronization mechanisms that
arise in such systems, and point out the important dynamics
exhibited by the order-parameter phasors in systems involv-
ing more than one distinct population of oscillators.

We believe that these mechanisms have much wider rel-
evance. Many networks of interest naturally consist of mul-
tiple interacting subpopulations. For example, dynamics in
neuronal networks typically involve many functional layers
and a diverse set of interacting elements �e.g., excitatory py-
ramidal neurons, inhibitory interneurons, and modulating
glia�. Connectivity among these elements and/or subpopula-
tions is also rarely static in time. In nature and in many
engineering applications, interacting networks of networks
with time-varying connectivity are also not uncommon. Fur-
thermore, it has recently been pointed out in the literature
that systems without obviously distinguishable subpopula-
tions can nevertheless dynamically segregate themselves into
distinct interacting clusters or communities.14 Although the
time-varying multipopulation Kuramoto system used here is
somewhat idealized, it does provide an analytically solvable
model in which the fundamental mechanisms of multipopu-
lation dynamics can be explored. With recent results on the
generalization of the Kuramoto model to other nontrivial
topologies15,16 and with chaotic units,17–19 this result also
suggests a starting point for the investigation of time-varying
multipopulation interactions in an even more general setting.
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FIG. 7. Coherence to coherence transition: The time-averaged order param-
eters �r�� vs switching frequency f for switching between connectivity ma-
trices KA and KA �see text�. Black, r�; gray, r�.
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