The role of inhibition in oscillatory wave dynamics in the cortex

Ying Xiao,1 Xiao-ying Huang,2 Stephen Van Wert,1 Ernest Barreto,3 Jian-young Wu,2 Bruce J. Gluckman1 and Steven J. Schiff1,4,*
1Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
2Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA
3School of Physics, Astronomy, and Computational Sciences, The Center for Neural Dynamics and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
4Department of Neurosurgery and Department of Physics, Pennsylvania State University, University Park, PA, USA

Keywords: brain oscillation, complexity, dimension, frequency, rat, synchronization

Abstract
Cortical oscillations arise during behavioral and mental tasks, and all temporal oscillations have particular spatial patterns. Studying the mechanisms that generate and modulate the spatiotemporal characteristics of oscillations is important for understanding neural information processing and the signs and symptoms of dynamical diseases of the brain. Nevertheless, it remains unclear how GABAergic inhibition modulates these oscillation dynamics. Using voltage-sensitive dye imaging, pharmacological methods, and tangentially cut occipital neocortical brain slices (including layers 3–5) of Sprague-Dawley rat, we found that GABAa disinhibition with bicuculline can progressively simplify oscillation dynamics in the presence of carbachol in a concentration-dependent manner. Additionally, GABAb disinhibition can further simplify oscillation dynamics after GABAa receptors are blocked. Both GABAa and GABAb disinhibition increase the synchronization of the neural network. Theta frequency (5–15-Hz) oscillations are reliably generated by using a combination of GABAa and GABAb antagonists alone. These theta oscillations have basic spatiotemporal patterns similar to those generated by carbachol/bicuculline. These results are illustrative of how GABAergic inhibition increases the complexity of patterns of activity and contributes to the regulation of the cortex.

Introduction
Brain oscillations are widely observed, including in the olfactory system (Lepousez et al., 2010), visual (Edden et al., 2009; Sun & Dan, 2009), somatosensory (Reimer & Hatsopoulos, 2010), auditory system (Luo & Poeppel, 2007) and hippocampus (Buzsáki, 2002; Geisler et al., 2010). In the neocortex, oscillations occur at rest (Arieli et al., 1996; Mak & Wolpaw, 2009), and during spatial learning and working memory (Raghavachari et al., 2001; Rizzuto et al., 2003). Oscillations are important in spreading depression (Koroleva et al., 2009), migraine (Cupolla et al., 2005), seizures (Worrell et al., 2004), and Parkinson’s disease (Schiff, 2010).

Oscillations are organised into spatiotemporal patterns, and patterns may propagate as traveling waves. Oscillatory traveling waves have been observed in the olfactory bulb (Lam et al., 2000), motor cortex (Rubino et al., 2006), visual cortex (Xu et al., 2007), and spiral waves during sleep (Huang et al., 2010). Propagating waves of activity occur in epilepsy (Telfeian & Connors, 1998). The physiological role of traveling spatiotemporal oscillatory cortical waves remains speculative (Ermentrout & Kleinfeld, 2001).

In vitro brain slices are useful for studying the mechanisms of oscillatory waves. Slice oscillations occur spontaneously in normal artificial cerebrospinal fluid (ACSF) (Wu et al., 2001). Theta frequency oscillations (4–15 Hz in rodents) can be generated in slices by cholinergic activation using carbachol with (Lukatch & MacIver, 1997; Bao & Wu, 2003; Cappaert et al., 2009) or without (Fisahn et al., 1998; Pålhalmi et al., 2004) GABAergic disinhibition, and also employing 4-aminopyridine (Tancredi et al., 2000), high potassium (Towers et al., 2002) or low magnesium (Flint et al., 1997; Zibkurus et al., 2006).

Active inhibition limits the spread of epileptiform activity (Treiman, 2001; Richter et al., 2010). Oscillations in disinhibited tissues are associated with increased firing rates (Sanchez-Vives & McCormick, 2000), and true spiral waves are seen (Huang et al., 2004). The role of GABAb inhibition remains unclear (Buzsáki, 2002; De la Prida et al., 2006). We are aware of no systematic titration of the strength of GABAergic inhibition with respect to the spatiotemporal dynamic characteristics of oscillatory cortical waves.

The dynamics of neuron populations can be observed with voltage-sensitive dye (VSD) imaging in vitro (Yuste et al., 1997; Bai et al., 2006; Carlson & Coulter, 2008) and in vivo (Prechtl et al., 1997; Xu...
et al., 2007; Palagina et al., 2009; Huang et al., 2010). Unidirectional propagating waves (4–15 Hz theta) in coronal cortical slices have a quasi one-dimension character (Wu et al., 2001; Bao & Wu, 2003). However, in tangential slices, oscillations can propagate as complex two-dimensional waves (Huang et al., 2004). Four basic types of patterns in tangential slices are observed (Huang et al., 2004): irregular, plane, ring and spiral. Tangential slices preserve more of the natural dynamics of oscillations than coronal slices where oscillatory dynamics are more constrained.

Here we examine the effects of inhibition and excitation on two-dimensional cortical wave dynamics with VSD imaging. We find increased complexity as inhibition increases, and demonstrate that a combination of pure disinhibitory GABAa and GABAb blockade permits robust oscillatory traveling wave formation without muscarinic activation.

Materials and methods

Tangential cortical slice preparation

All experiments were performed with approval from the Institutional Animal Care and Use Committee of Penn State University. Neocortical slices were obtained from 27 male Sprague-Dawley rats from postnatal day 21 to 35. The animals were deeply anaesthetised with diethyl-ether and decapitated. The whole brain was quickly removed and chilled in cold (4 °C) ACSF [containing the following (in mM): 132 NaCl, 3 KCl, 2 CaCl2, 2 MgSO4, 1.25 NaH2PO4, 26 NaHCO3, and 10 dextrose] for 60 s. The ACSF was saturated with 95% O2 and 5% CO2 at room temperature for 1 h before the experiment. Tangential slices were cut, according to Huang et al. (2004), with a vibratome on the rostrocaudal and mediolateral coordinates of bregma –2 to –8 mm and lateral 1–6 mm, respectively. The first cut was made 300 μm deep from the pial surface, and the tissue was discarded. The second cut was made 500 μm deeper to obtain a 500-μm-thick slice of the middle cortical layers (including layers 3–5) (Huang et al., 2004). The 500-μm-thick slice was transferred to a holding chamber containing ACSF and incubated at 26 °C for at least 1 h before staining. After 2 h staining and 0.5 h recovering in ACSF, the slice was transferred to a submerson chamber. The slice was perfused with ACSF at a rate of >20 mL/min for 30 min (30–31 °C) in the chamber before recording. Because of the curvature of the cortex, the size of the tangential slices was limited to about 5 × 6 mm². The anatomical regions included in these slices included the primary and secondary visual cortex within the field of view imaged, with portions of the primary somatosensory and parietal association cortices lying outside the field of view. Layer 5 was facing up in all the experiments and the slices in all the figures were oriented in the same way. The location of the stimulation electrode was kept consistent for the same slice in different experiments. The stimulus amplitude was chosen to be 1 mA above the threshold amplitude for oscillation generation and kept consistent for the same slice for different drug conditions.

Voltage-sensitive dye imaging

The imaging apparatus and methods are described in detail in Jin et al. (2002). Briefly, slices were stained for 2 h with 5 μg/mL of an absorbance oxonol dye, NK3630 (Nippon Kankoh-Shikiso Kenkyusho, Okayama, Japan). The dye was dissolved in ACSF (26 °C) on the day of use. VSD images were taken by a 464-element photodiode array (WuTech Instruments) with 1.6-KHz sampling rate. An objective of 4× (0.10 NA, dry lens; Zeiss) was used to project the image of the tissue to the diode array and each photo detector received light from an area of 0.41 × 0.41 mm² of the tissue. The preparation was transilluminated by 705 ± 20-nm light and was only exposed to the illumination light during optical recording trials for about 10 s/trial. The typical voltage-sensitive signal was 10⁻²–10⁻⁴ of the resting light intensity.

Pharmacological agents

Carbamoylcholine chloride (carbachol), (−)-bicuculline methiodide (Biomol®), picrotoxin, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 2,3-dioxo-6-nitro-1,2,3,4-tetrahydropyridinef[quininoxaline-7-sulfonamide] (NBQX), D–(−)-2-amino-5-phosphonopentanoic acid (D–APV), dimethyl sulfoxide (DMSO) and 3-[(3,4-dichlorophenyl)methyl] aminopropyl (diethoxymethyl) phosphinic acid (CGP52432) were used in combinations to evoke or suppress oscillations. Carbachol, bicuculline, CGP52432 and D–APV were made into high-concentration stock solutions with deionised water (18 MΩ resistance). Picrotoxin, CNQX and NBQX were dissolved in DMSO. The final concentration of DMSO was 0.05% (v/v) when picrotoxin was added into the solution, and 0.1% (v/v) when CNQX or NBQX was added. As reported in Fink et al. (2000), these final concentrations of DMSO did not appear to affect our experiments. Carbachol, picrotoxin and DMSO were purchased from Sigma-Aldrich (St Louis, MO, USA). CNQX, NBQX, D–APV and CGP52432 were purchased from Tocris (Ellisville, MO, USA).

Data analysis

Data visualization and dynamics analysis

The optical data were acquired using NEUROPLEX software (Red-ShiftImaging, Fairfield, CT, USA). Oscillations from each slice were evoked by a 0.5 ms 5–7 mA square-wave pulse, and further analysed using MATLAB programs (Mathworks, Natick, MA, USA). In brief, raw data acquired at 1.6 kHz were resampled to 1000 Hz. There is a 0.5–1.0 s latent period following brief stimulation when inducing such wave patterns, which, to our knowledge, has not yet been characterised. To remove the initial stimulus artifact and coupled neuronal activation, as well as the latent period, the first 2 s of resampled data were discarded. (We illustrate examples of the initial stimulation and latent period in Supporting Information Figs S1, S2, and S3.) The remaining data were normalised by the maximum value from each photodiode signal; the normalised data were low-pass filtered under 30 Hz for spectral coherency analysis (described below). Based on the results from spectral coherency analysis, the normalised data were further band-pass filtered between 5 and 30 Hz for synchrony and dynamics analysis to focus on results as free of artifact as possible. In Supporting Information Figs S1, S2, and S3, we included frequencies of 0–5 Hz in both optical and electrical signals, and the correlated low frequencies in optical tracings can clearly be seen in contrast with the electrical signal. At 705 nm, one can see the intrinsic optical signal related to cell swelling in the optical measurements but, at this light frequency, the intrinsic signal will not mask the neuronal voltage signal (Bai et al., 2006). Furthermore, the intrinsic optical signal tends to correlate with and lag behind neuronal activity, features not clearly represented in our low-frequency traces. We therefore attribute most of our optically-only correlated optical signal to movement artifact, which is corroborated by the spectra in the Supporting Information figures demonstrating no correlation in frequencies below 5 Hz in the different experimental conditions that affect the neuronal activity of
these slices. Spectral analysis was performed using a multitaper method (Mitra & Pesaran, 1999). As the presence of shot-noise in the optical signal makes direct visualization of the space-time data difficult, filtered data were further spatiotemporally denoised using singular value decomposition (Mitra & Pesaran, 1999; Schiff et al., 2007).

The activity patterns of denoised data were obtained by visualizing the full sequence of images displayed as pseudocolor images. In the pseudocolor images, data from each optical detector were normalized to their own maximum, and then each normalized data point was assigned a color according to a linear color scale. Therefore, the smallest normalized data point was assigned zero on the color scale and showed deep blue in the image; the maximum normalized data point was assigned 1 on the color scale and showed deep red. Displayed figures were further smoothed with a 3×3 spatial filter. The complexity of wave dynamics was quantified by a modal dimension analysis (Schiff et al., 2007). A one-tailed t-test was used to determine the significance level of differences between two groups. One-way ANOVA and Tukey post hoc testing were used to determine the significance level of differences between more than two groups. $P < 0.05$ was regarded as significant.

Bootstrap method

In the present study, bootstrapping was based on resampling time series multiple times by exchanging segments of a time series at a different random location (see detailed description in Schiff et al., 2005). The resultant surrogate data sets are measured in the same way as the original data to generate an ensemble of measurements. For the surrogate data sets, the local correlations are largely destroyed. Only the values above the 95th percentile of the ensemble of measurements obtained from the surrogate data sets will be considered meaningful.

Spectral coherency analysis

In VSD measurements from brain slices, there are artifacts caused by vibrations and fluid waves in the light path. Motion artifacts in the VSD signal should have no relationship with the membrane potential changes of interest. In order to study neural activity without the contamination of vibration artifacts, the signal frequency range of interest for analysis was determined through a comparative coherency analysis.

We consider that signals coherent in frequency (or significantly correlated in the time domain) in both local field potential (LFP) and optical signals are electrical signals that are caused by membrane potential changes. If the signal in some frequency band is only coherent between optical detectors but not coherent in LFP at the same time, this signal is likely to be an artifact. It is also possible that the optical signals are correlated by slow intrinsic optical signals (Bai et al., 2006), which would not be relevant to the present study. In brief, the LFP and signals from four optical detectors (labeled optical 1, optical 2, optical 3 and optical 4), which were spatially close to the tip of the LFP recording electrode, were chosen for each trial to perform the coherency analysis. The LFP and optical signals were resampled to 1000 Hz and low-pass filtered at 30 Hz before calculating the multitaper normalized cross-spectrum for each pair of filtered data from two optical detectors (data pairs include: optical 1–optical 2, optical 1–optical 3, optical 1–optical 4, optical 2–optical 3, optical 2–optical 4, optical 3–optical 4) or from the data pair of LFP and one optical detector (data pairs include: LFP–optical 1, LFP–optical 2, LFP–optical 3, LFP–optical 4). These 10 data pairs were analyzed for each trial. The bootstrap method was used to set the statistical reference for the confidence level. For each data set (LFP or optical), the time series within each 6-s window was resampled 1000 times by bootstrapping. The surrogate data pairs were subjected to the same multitaper coherency analysis and the same 95th percentile confidence level was used as with the original data pair. To be very conservative, only coherency levels of the original data pair greater than the bootstrapped 95th percentile were considered likely to be significant.

In Fig. 1, most of the coherent frequencies between the LFP and optical signals (shown as blue circles) were within the range of 5–30 Hz, whereas most of the coherent frequencies between optical signals alone (shown as red circles) were within the 0–5 Hz range. When optical–optical signals were coherent within the 5–30 Hz range, they all closely overlapped with coherent frequencies between LFP and optical signals. Therefore, coherent frequencies within the 5–30 Hz band appear largely artifact free and reflect membrane potential changes. The situation below 5 Hz is considerably more complex. As shown in Fig. 1, there are examples where the optical–optical coherency is confirmed by the optical–LFP coherency, and many examples where the optical–optical and LFP–optical coherencies are separate. To be conservative, we will eliminate from study in this report all of the coherent results within this lower frequency range, recognizing that in this process we will eliminate some very real low-frequency correlations that are present in our measurements. Based on these screening coherencies, we therefore band-pass filtered all data between 5 and 30 Hz to focus on describing results as free of artifact as possible.

Synchrony analysis

Synchrony analysis was performed according to the methods described in Schiff et al. (2005; a code archive is available with this citation). For computational efficiency, signals from 31 optical detectors were selected, so that the picked detectors were distributed in the imaging field as evenly as possible. The sampled detectors were the same for each experiment. Cross-correlation at both zero lag and arbitrary lags, and phase variance for all data pairs, were calculated for

![Fig. 1. Spectral coherency analysis](image-url)
each non-overlapping 1-s window of 5–30 Hz filtered data. For phase variance, phase was assigned from Hilbert transformation of each 6 s time series from each optical detector using the method of Bendat & Piersol (1986). For each time point of the 6 s trial, the sum of the cosine and the sum of the sine of the phases over all the 31 optical detectors were taken, and the average phase angle was calculated for each time point. The sequential average angle was unwrapped before calculating the difference between adjacent average angles. The variance of the differences between sequential average angles was calculated for each 1 s time window to generate the phase variance.

Bootstrapping was used to obtain the statistical confidence level of cross-correlation at zero and arbitrary lags as well as the phase variance. Data were resampled 100 times within each non-overlapping 1 s window. The cross-correlation at zero lag for each second was considered significant when its value was above the 95th percentile of the ensemble of cross-correlation obtained from the surrogate data sets. The mean value and SD of the ensemble of the cross-correlation value can be calculated and the mean ± twice the SD was taken as the confidence interval; only the cross-correlation values at arbitrary lag beyond the confidence interval were considered significant and their absolute value summed. The phase variance for each second was considered significant when the value was smaller than the 5th percentile of the ensemble of bootstrapped phase variance. The sum of cross-correlation at zero lag for the whole 6 s duration window for all data pairs was also calculated by summing the significant cross-correlation at zero lag from each second of data. The sum of phase variance for the whole 6 s duration window was calculated by summing the significant phase variance from six 1 s windows. The sum of cross-correlation at both zero lag and arbitrary lags and sum of phase variance were normalised before they were compared using a one-tailed t-test or ANOVA.

Results

Effects of GABAa receptor, GABAb receptor, N-methyl-D-aspartate receptor and AMPA receptor blockade on oscillation waveforms

In the following GABAa titration experiments, 100 µM carbachol was used in the perfusate to activate the slices (after Huang et al., 2004). The bicuculline concentration was increased gradually from 1 to 10 µM. Although oscillatory episodes will occur spontaneously in disinhibited transverse cortical slices, we typically used small electrical stimuli to trigger such events in order to reduce exposure to phototoxic effects with VSD imaging (Huang et al., 2004). Without bicuculline in the perfusate, propagating oscillations could not be evoked by a single electrical pulse stimulus. With 1 µM bicuculline, low-amplitude propagating theta frequency oscillations were evoked (Fig. 2B). The beginning second or so of the trace in Fig. 2B shows an irregular waveform, followed by more regular oscillations as the episode evolves (a more complete discussion of such event evolution can be found in Schiff et al., 2007). When bicuculline was increased to 5 or 10 µM, propagating theta

![Fig. 2. Results for bicuculline titration experiments.](image)
frequency oscillations showed higher amplitudes and more regular waveforms (Fig. 2B). Power spectrum analysis was performed on the oscillations generated by different bicuculline concentrations and the energy of frequency components was compared between groups. When bicuculline was increased from 1 to 5 mM, the dominant frequency peak in the average power spectrum of 10 slices shifted towards a lower frequency (from 10 to 8 Hz); when bicuculline increased to 10 mM, the frequency peak continued its drift towards a lower frequency (Fig. 2D).

Statistical analyses (one-way ANOVA and Tukey post hoc testing) confirmed that, when bicuculline was increased from 1 to 5 mM, the energy of the 8–11 and 12–14 Hz frequency components of 10 slices was significantly increased (df = 29, F = 6.25, P = 0.0059 and df = 29, F = 4.52, P = 0.0203, respectively) (Fig. 2E), and the energy of the 8–11 Hz (df = 29, F = 6.25, P = 0.0059) frequency components was significantly increased by 10 mM bicuculline compared with 1 mM bicuculline (Fig. 2E).

The GABAB antagonist CGP52432 was applied to examine the influence of GABAB on theta frequency oscillation. Compared with those evoked without CGP52432, the oscillation waveform became more regular with 100 μM carbachol/10 μM bicuculline/4 μM CGP52432 (compare traces in Fig. 3F). These results are consistent with the increased oscillation amplitude shown for a similar drug combination in Lukatch & MacIver (1997), although they did not discuss these displayed findings. The dominant frequency peak in the average power spectrum of nine slices shifted from 12 to 7 Hz when compared with the group without CGP52432 (Fig. 3C). The energy of the 5–9 Hz (one-tailed t-test, df = 16, P = 6.74 × 10^-4), 11–17 Hz (df = 16, P = 0.0015), 22–23 Hz (df = 16, P = 0.0396) and 25–26 Hz (df = 16, P = 0.0235) frequency components was significantly increased by CGP52432 (Fig. 3D).

Consistent with coronal neocortical slices (Lukatch & MacIver, 1997), blocking N-methyl-D-aspartate (NMDA) receptors using 80 μM D-APV generated the appearance of large-amplitude irregular waves in place of more rhythmic ones (compare traces in Fig. 3E). D-APV altered the frequency content of the oscillations (Fig. 3F), with the energy of the 10–11 Hz components of eight slices significantly

Fig. 3. The effects of GABAB disinhibition and NMDA receptor blockade on theta oscillation waveforms. (A) Recording arrangement, with stimulation (stim) and local field potential (LFP) electrodes. Signals from one example optical detector (marked as a black filled circle in A) with and without GABAB inhibition are shown as 6 s traces in B. Traces in E are signals from the same example optical detector with and without NMDA receptor activation. The blue lines in traces of B and E are zero baselines. In B, vertical scale: 4 × 10^-4 of resting light intensity; in E, vertical scale: 2 × 10^-4 of resting light intensity. (C) Power spectrum (logarithmic scale) for the optical signals during a 6 s episode, averaged across all detectors from nine slice experiments. Carb, carbachol; bic, bicuculline; CGP, CGP52432. The average peak frequencies with 100 μM carbachol/10 μM bicuculline were about 10 and 12 Hz. When CGP52432 was in the solution, the peak was about 7 Hz with a more minor peak at about 12 Hz. (D) Bar plot shows the average normalised energy in four frequency ranges corresponding to conditions with and without GABAB inhibition. Error bars represent ± SD. Red and blue bars represent the 100 μM carbachol/10 μM bicuculline group and the 100 μM carbachol/10 μM bicuculline/4 μM CGP52432 group, respectively. CGP52432 significantly elevated energy at 5–9, 11–17, 22–23 and 25–26 Hz when compared with the group without CGP52432. (F) Power spectrum for conditions with and without NMDA receptor activation, averaged across all detectors from eight slice experiments. (G) Energy analysis. Red and blue bars represent the 100 μM carbachol/10 μM bicuculline group and the 100 μM carbachol/10 μM bicuculline/80 μM D-APV group, respectively. D-APV significantly decreased energy at 10–11 Hz and significantly increased energy at 12–14 Hz when compared with the no D-APV group. The significant differences between groups in D and G are marked by asterisks.
Effects of GABAa and GABAb disinhibition, and N-methyl-D-aspartate blockade on oscillation dynamics

Each temporal oscillation cycle was associated with one spatial propagating wave (consistent with Bao & Wu, 2003). The spatiotemporal pattern of one propagating wave can be observed by visually inspecting sequential pseudocolor images. In general, the wave patterns can be classified as regular waves and irregular waves. Regular waves are defined as the waves that repeatedly appear in a certain pattern for several cycles of an oscillation episode. Simple regular waves include three basic patterns: ring waves (such as the image in Fig. 2CII, and Supporting Information movie file M1), plane waves (such as the images in Fig. 2CIII, and Supporting Information movie file M2) and spiral waves (such as the images in Fig. 6DIV, and Supporting Information movie file M3). In addition to simple basic patterns, regular waves in the present study also included complex patterns, which were the combination of one or more basic wave patterns, such as ring with collision (Fig. 2CIV, and Supporting Information movie file M4), multiple rings (Fig. 6DIII), etc. Irregular waves change pattern from cycle to cycle and are not periodic.

The changes in complexity of oscillation dynamics can be visualised by the use of trajectory plots of modal amplitudes (Schiff et al., 2007). These modal amplitudes are the amplitudes of the spatial modes calculated from a singular value decomposition, and these modal amplitudes are the amplitudes of the spatial modes calculated from a singular value decomposition, and these trajectory plots have been employed as a means of visualizing wave data from both whole-brain (Sensenman & Robbins, 1999) and slice data (Schiff et al., 2007). Simple periodic dynamics tend to show closed loops or limit-cycles when plotted in this manner. When the spatiotemporal dynamics are complex (substantially greater than three dimensions), and aperiodic, the trajectory plots tend to show a lack of organised structure. Trajectory plots revealed that oscillations evoked with 5 and 10 μM bicuculline had much simpler dynamics than those evoked with 1 μM bicuculline (compare the three rows of trajectory plots in Fig. 4A). Analysis for 10 slices showed that oscillations evoked with 5 and 10 μM bicuculline had significantly lower dimension in spatial-frequency (df = 29, F = 12.07, P = 0.0002) and spatial-amplitude (df = 29, F = 11.17, P = 0.0003) modes than those evoked with 1 μM bicuculline (Fig. 4B). The dynamics of oscillations evoked by 100 μM carbachol/10 μM bicuculline had further simplified by 4 μM CGP52432 (Fig. 4C). Dimension analysis for nine slices confirmed that CGP52432 significantly decreased the dimension of oscillations in both spatial-frequency (one-tailed t-test, df = 16, P = 0.0083) and spatial-amplitude (df = 16, P = 0.0152) modes when compared with the group without CGP52432 (Fig. 4D). However, NMDA blockade by 80 μM D-APV complicated the dynamics of oscillations evoked by 100 μM carbachol/10 μM bicuculline (Fig. 4E). Dimension analysis for eight slices confirmed that D-APV significantly increased dimension of oscillations in both spatial-frequency (df = 14, P = 0.0022) and spatial-amplitude (df = 14, P = 0.0447) modes (Fig. 4F).

In summary, in the presence of carbachol, GABAa, and GABAb disinhibition, there was a significant decrease in the dynamical complexity of oscillations, whereas NMDA blockade significantly increased the dynamical complexity.

Modulation of neural response synchronization by GABAa and GABAb disinhibition, and N-methyl-D-aspartate blockade

The synchronization of neural responses was measured by three parameters: the cross-correlation sum at zero lag, cross-correlation sum at arbitrary lags, and sum of phase variance. The average results of 10 slices for the modulation of synchrony by GABAa disinhibition are shown in Fig. 5A. There was no significant change in the cross-correlation sum at zero lag. However, 10 μM bicuculline significantly decreased the cross-correlation sum at arbitrary lags when compared with 1 μM bicuculline (ANOVA and Tukey post hoc analysis, df = 29, F = 5.23, P = 0.012); 5 and 10 μM bicuculline also significantly decreased the sum of phase variance, reflecting increased synchronisation (df = 29, F = 4.07, P = 0.0285) when compared with 1 μM bicuculline. Phase can be a useful metric of synchronization in non-linear systems when linear cross-correlation may be insensitive (Pikovsky et al., 2000). However, this issue is complex (Netoff et al., 2004) and we present both types of measurement here to more fully capture the characteristics of the interactions of these neuronal networks.

The average results of nine slices for the modulation of synchrony by GABAa disinhibition are shown in Fig. 5B. The cross-correlation sums at both zero lag and arbitrary lags were significantly higher (one-tailed t-test, df = 16, P = 0.0018 and df = 16, P = 0.0881, respectively) with 100 μM carbachol/10 μM bicuculline/4 μM CGP52432 than without CGP52432. However, the sum of phase variance was not significantly changed when CGP52432 was added into the perfusate. There was no significant change in synchronization in the presence of NMDA receptor blockade (Fig. 5C).

In summary, there appeared to be an increase in both cross-correlation and phase synchronization with GABAa disinhibition, and a further increase in cross-correlation with GABAb disinhibition.

Oscillations and spatiotemporal patterns evoked by picrotoxin/CGP52432

Might GABA modulation alone be sufficient to generate propagating oscillations? We found that bicuculline alone was insufficient to produce wave oscillations (data not shown). To focus on GABA modulation, we note that bicuculline not only competitively blocks GABAa receptors, but also blocks the apamin-sensitive small-conductance Ca-activated K+ channel (Kleiman-Weiner et al., 2004) and we present both types of measurement here to more fully capture the characteristics of the interactions of these neuronal networks.

The present study found that propagating theta oscillations in tangential occipital neocortical slices were based on AMPA receptor-mediated synaptic transmission. GABAgic inhibition affected both
the dynamical complexity of oscillations and synchronization. Blockade of GABAergic inhibition significantly simplified oscillatory dynamics. The blockade of NMDA receptors significantly complicated oscillation dynamics. Both GABAa and GABAb disinhibition altered the synchronization of the spatial patterns in different ways. Blockade of GABAa and GABAb with picrotoxin/CGP52432 reliably generated propagating theta oscillations that shared many of the characteristics of waves generated with carbachol/bicuculline.

Comparison with other studies

Oscillations in the brain can be evoked in many ways. In human neocortical, rat hippocampal, and rat coronal neocortical slices, oscillations evoked by bicuculline, carbachol, or their combination depend primarily on non-NMDA excitatory amino acids (MacVicar & Tse, 1989; McCormick, 1989; Lukatch & MacIver, 1997; Williams & Kauer, 1997). The present study confirmed that oscillations evoked by carbachol/bicuculline in rat tangential occipital neocortical slices were eliminated by AMPA receptor antagonists but could not be eliminated by either NMDA antagonists or GABA antagonists.

Although it has been reported that GABAa receptor-mediated inhibition has no clear effect on carbachol-evoked theta oscillation in rat hippocampal slices (MacVicar & Tse, 1989), the titration of bicuculline in the present study slowed the peak frequency and increased the amplitude of oscillations. This result appears consistent with the shortening of up states and lengthening of down states of slow oscillations caused by bicuculline in coronal slices from the ferret occipital cortex (Sanchez-Vives et al., 2010). Two spatiotemporal effects were found when GABAa receptor-mediated inhibition was decreased. First, the temporal profile of oscillations became more regular. Second, the dimension of the patterns of oscillations in both the spatial-amplitude and spatial-frequency domains significantly decreased, which means that the activity pattern of oscillations became simpler and the number of frequency components of the oscillations decreased.

Although the role of GABAa disinhibition has been extensively explored, the role of GABAb receptor-mediated inhibition in theta
oscillation remains more elusive (Scanziani, 2000; Buzsáki, 2002; De la Prida et al., 2006). It has been reported that the blockade of GABAb receptors modulates the amplitude and duration of GABAa disinhibition-evoked epileptiform bursts in the human cerebral cortex (McCormick, 1989), and helps generate oscillations with bicuculline in the mouse primary motor cortex (Castro-Alamancos & Rigas, 2002). However, it has been difficult to characterise the effects of GABAb receptor blockade on oscillations evoked by carbachol/bicuculline in coronal neocortical slices (Lukatch & MacIver, 1997) and carbachol-evoked oscillations in hippocampal slices (MacVicar & Tse, 1989). We note that, in Lukatch & MacIver (1997), adding GABAb blockade to carbachol- and bicuculline-induced oscillations produced an increase in amplitude and apparent regularization of the oscillations, although they did not comment on these changes. We found that GABAb disinhibition reliably increased the power of 5–9, 11–17, 22–23 and 25–26 Hz components while shifting the dominant frequency peak toward lower frequencies when compared with carbachol/bicuculline without CGP52432. Combining the effect of bicuculline and CGP52432, more complete GABAergic disinhibition simplifies the cortical dynamics.

It has been reported that, in mouse coronal slices, the blockade of NMDA receptors reduces the power of the 10–15 Hz frequency range. This is consistent with the observation that NMDA receptor blockade reduces the power of oscillations in the neocortex. Combining the effect of bicuculline and CGP52432, more complete GABAergic disinhibition may simplify the cortical dynamics.

Fig. 5. Synchrony analyses for different conditions. (A) Bar plots show the average normalised values of three parameters for synchrony corresponding to three bicuculline concentrations. Error bars stand for ± SD. Black, blue and red bars in A represent the 1, 5 and 10 μM bicuculline groups, respectively. One-way ANOVA and Tukey post hoc analysis are used to check the significance level in A. The 10 μM bicuculline group had a significantly higher cross-correlation sum calculated at arbitrary lags than the 1 μM bicuculline group; the 5 μM bicuculline and 10 μM bicuculline groups had a significantly lower sum of phase variance than the 1 μM bicuculline group. However, there was no significant difference within groups in the correlation sum calculated at zero lag. (B) Synchrony analysis for the effect of GABAb disinhibition. Red and blue bars in B represent the 100 μM carbachol/10 μM bicuculline group and the 100 μM carbachol/10 μM bicuculline/4 μM CGP52432 group, respectively. CGP52432 significantly elevated the cross-correlation sum at both zero lag and arbitrary lags; however, it did not affect the sum of phase variance when CGP52432 was added. (C) Synchrony analysis for the effect of NMDA receptor blockade. Red and blue bars in C represent the 100 μM carbachol/10 μM bicuculline group and the 100 μM carbachol/10 μM bicuculline/80 μM D-APV group, respectively. There was no significant difference in the cross-correlation sum at any lag between groups nor in the sum of phase variance. Asterisks in A and B indicate a significant difference between groups. Carb, carbachol; bic, bicuculline; CGP, CGP52432.

Fig. 6. Oscillations evoked by the combination of picrotoxin (PTX) and CGP52432. (A) Recording arrangement, with stimulation (stim) and local field potential (LFP) electrodes. The signal from one example optical detector (marked as a black filled circle in A) is shown in B. Vertical scale: 2 × 10−4 of resting light intensity. (C) Power spectrum (logarithmic scale) for optical signals averaged from seven slice experiments. The average peak frequencies were at about 6 and 11 Hz. (D) Pattern examples of a 6 s oscillatory episode evoked with 50 μM PTX/6 μM CGP52432 in B. These pseudocolor images are displayed at 6 ms intervals between frames. In section III, responses that emerged at two locations in the imaging field developed into two connected rings and collided as the rings propagated.

Fig. 5. Synchrony analyses for different conditions. (A) Bar plots show the average normalised values of three parameters for synchrony corresponding to three bicuculline concentrations. Error bars stand for ± SD. Black, blue and red bars in A represent the 1, 5 and 10 μM bicuculline groups, respectively. One-way ANOVA and Tukey post hoc analysis are used to check the significance level in A. The 10 μM bicuculline group had a significantly higher cross-correlation sum calculated at arbitrary lags than the 1 μM bicuculline group; the 5 μM bicuculline and 10 μM bicuculline groups had a significantly lower sum of phase variance than the 1 μM bicuculline group. However, there was no significant difference within groups in the correlation sum calculated at zero lag. (B) Synchrony analysis for the effect of GABAb disinhibition. Red and blue bars in B represent the 100 μM carbachol/10 μM bicuculline group and the 100 μM carbachol/10 μM bicuculline/4 μM CGP52432 group, respectively. CGP52432 significantly elevated the cross-correlation sum at both zero lag and arbitrary lags; however, it did not affect the sum of phase variance when CGP52432 was added. (C) Synchrony analysis for the effect of NMDA receptor blockade. Red and blue bars in C represent the 100 μM carbachol/10 μM bicuculline group and the 100 μM carbachol/10 μM bicuculline/80 μM D-APV group, respectively. There was no significant difference in the cross-correlation sum at any lag between groups nor in the sum of phase variance. Asterisks in A and B indicate a significant difference between groups. Carb, carbachol; bic, bicuculline; CGP, CGP52432.

Fig. 6. Oscillations evoked by the combination of picrotoxin (PTX) and CGP52432. (A) Recording arrangement, with stimulation (stim) and local field potential (LFP) electrodes. The signal from one example optical detector (marked as a black filled circle in A) is shown in B. Vertical scale: 2 × 10−4 of resting light intensity. (C) Power spectrum (logarithmic scale) for optical signals averaged from seven slice experiments. The average peak frequencies were at about 6 and 11 Hz. (D) Pattern examples of a 6 s oscillatory episode evoked with 50 μM PTX/6 μM CGP52432 in B. These pseudocolor images are displayed at 6 ms intervals between frames. In section III, responses that emerged at two locations in the imaging field developed into two connected rings and collided as the rings propagated.
component of oscillations evoked by bicuculline/CGP35348, but increases the power of the 15–25 Hz frequency component (Castro-Alamancos & Rigas, 2002). In the coronal cortical slice of rat, the oscillations evoked by carbachol/bicuculline/α-APV intermingle with bursting activity (Lukatch & MacIver, 1997). Our findings of the effects of NMDA blockade are consistent with these previous reports.

At what point are large-amplitude oscillations in the cortex pathological? Our study in the largely deafferented slice cannot say. However, our conjecture is that ‘normal’ likely lies somewhere between the most complex regular, and the most simple of the large-amplitude oscillations analysed in this report. In a sense, one might view GABAa and GABAb receptor-mediated inhibition as helping to maintain the complexity of cortical dynamics. Recent work from Huang et al. (2010) suggests that long-range connections to the cortex may serve to break up organised oscillatory waves as we have here studied. Indeed, in previous work of Yuste et al. (1997), GABAa disinhibition served to remove modular architectural boundaries to wave propagation in tangential slices.

The types of coherent and persistent wave formation that we have studied are likely pathological, and the normal connectivity of the cortex may serve to break up such wave dynamics (Huang et al., 2010). Spiral waves in excitable media, biological or chemical (Winfree, 2001), tend to be stable, and mammalian cortices may have sufficient inhibitory connections present to render the lifetime of such rotational waves brief. Whether these periodic dynamics share similarities with epileptic seizure dynamics remains an open question at present, as inhibition appears to play an important role in many types of seizure patterns (see, e.g. Ziburkus et al., 2006, and references therein).

Comparison of paroxysmal discharges in tangential vs. coronal slices

It has been reported that weakening inhibition in interconnected inhibitory networks of the hippocampus may disrupt population rhythmicity (Whittington et al., 1998). In contrast, the present study showed that weakening inhibition of interconnected excitatory networks of the tangential occipital neocortical slice increased the synchronization of activity. The dynamics of brain slices, and their response to pharmacological manipulation, is dependent upon the topology of the slice cut and the residual network anatomy.

In the mouse barrel cortex, paroxysmal discharges evoked by bicuculline in tangential layer IV slices are different in characteristics from those evoked in coronal slices (Fleidervish et al., 1998). The paroxysmal discharges evoked in tangential layer IV slices are completely blocked by an NMDA receptor blocker and are unaffected by the AMPA receptor blocker CNQX, whereas events in coronal slices can only be generated if AMPA receptor-mediated transmission is intact (Golomb & Amitai, 1997). In contrast to the barrel cortex, oscillations evoked by carbachol/bicuculline in rat tangential occipital neocortical slices share many similarities in mechanism with those evoked in coronal neocortical slices. The activation of AMPA receptors is necessary for the generation of propagating oscillations in both coronal neocortical slices (Lukatch & MacIver, 1997) and tangential occipital neocortical slices (the present study), whereas the activation of NMDA receptors modulates oscillation expression in both coronal (Lukatch & MacIver, 1997) and tangential occipital cortical slices.

The mechanism underlying the oscillation dynamics

Slice geometry is critical to the dynamics observed. In the hippocampus, orthogonal networks of dendritic vs. somatic innervating inhibitory neurons render the dynamics and rhythmicity of transverse vs. longitudinal slices very different (Gloveli et al., 2005). In our experiments, the tangential slice from the middle cortical layers (3–5) is far more isotropic than a coronal slice, and permits the symmetries necessary for coherent traveling wave formation to occur. Another contrast between our findings and that of the oscillations in coronal slices is that our waves propagate readily even at relatively low levels of inhibitory blockade. In a layer-by-layer study of propagation in coronal slices, layer 5 has been shown to be the layer that best supports propagating traveling waves (Telfeian & Connors, 1998). Although the superficial cortical layers (1–3) were important in the generation of stationary oscillations in coronal slices (Lukatch & MacIver, 1997), the middle cortical layers alone can support oscillations when slices are tangentially cut.

Spectral coherency analysis

Membrane voltage changes detected by VSD detectors near the tip of LFP recording electrodes should be most coherent with the LFP. However, there are many sources of noise in VSD signals ranging from photon shot-noise to movement artifacts (Grinvald et al., 1988). In order to analyse data without artifact contamination, spectral coherency analysis was used in the present study to identify a heavily contaminated from a non-contaminated frequency band. We make the assumption that the movement artifact in such optical imaging is independent of any movement-induced neuronal activity, and is additive to the optical signal. We set a conservative criterion to identify a frequency cutoff that separated coherencies between optical channels that could be confirmed by electrical LFP recordings. Below 5 Hz, there were complex results that included many examples of coherencies between optical channels alone without LFP confirmation. We excluded all of these low-frequency results in order to protect against analysing coherent artifacts. Artifacts in VSD imaging of wave dynamics in the brain are common and we offer our strategy as a general approach for artifact reduction in such scenarios. Our suspicion is that the frequency ranges exhibiting substantial movement artifact will differ from one experimental setup to another, subject to vibration-absorbing table characteristics, building vibration, room air circulation movements, etc. We found little evidence for coherence artifacts above 5 Hz in our experiments.

Characterising cortical spatiotemporal dynamics

There is no general strategy to characterise the complexity and similarities of spatiotemporal patterns of brain activity. We have used multivariate metrics of synchronisation (Schiff et al., 2005) and mode decompositions (Schiff et al., 2007) to help to classify and characterise such dynamics. In the present study, in addition to standard Fourier frequency decomposition, we used metrics of synchronisation and dynamical complexity to characterise the properties of oscillatory waves in the neocortex. We were able to characterise consistent changes (e.g. with adding GABAb blockade to GABAa blockade) where other analyses have had some difficulty in observing such effects (Lukatch & MacIver, 1997). How complex the characterisation of oscillatory wave patterns in the cortex needs to be remains an open question. However, the dynamics of the cortex is complex, and our findings suggest that introducing metrics of complexity and synchronisation is useful in our efforts to better define the dynamics and pharmacology of cortical waves. Whether this characterisation of network activity, in combination with cellular level electrophysiology, would be an effective way to characterise the
Towards control of cortical oscillations

Although empirical data-driven control strategies can be effective in neuronal systems (Gluckman et al., 2001), we are interested in developing model-based observation and control of neuronal circuitry (Schiff & Sauer, 2008; Schiff, 2010, 2012). Such control systems may be useful for dynamical diseases such as epilepsy and Parkinson’s disease, and perhaps might affect the initiation of migraines by modulating spreading depression waves. A VSD experiment in a tangential cortical slice has many advantages for early control experiments. The simultaneous measurement of many different points across the photodiode array permits a multiple input measurement that can increase the observability of any spatiotemporal physical system (Aguirre & Letellier, 2005). The computational overhead for such control systems will be greatly decreased using a purely excitatory control systems will be greatly decreased using a purely excitatory

dynamical system (Aguirre & Letellier, 2005). The computational overhead for such control systems will be greatly decreased using a purely excitatory neuronal network with GABAa and GABAb blockade as shown in these present results, and as demonstrated numerically in Schiff & Sauer (2008). A more difficult challenge for future work will be to develop the technologies to handle multilayered excitatory and inhibitory networks in real time for model-based control. The results of this present study will help to enable the early attempts at this next generation of neuronal controllers.

Supporting Information

Additional supporting information may be found in the online version of this article:

Fig. S1. Traces without low-frequency filtering and including initial stimulation and latent period. (A) Recording arrangement. Signals from two optical detectors (marked as filled circles 1 and 2) and LFPs under three drug conditions are shown in C. The blue dashed lines in traces of C are zero baselines. Vertical scale: 2×10^{-3} of resting light intensity. Horizontal scale: 1 s. The solid blue lines in C mark the stimulus delivery time points. (B) Power spectrum (logarithmic scale) for optical signals during a 6 s episode averaged across all detectors of 10 slice experiments without low-frequency filtering. Note that there was no substantial difference in spectra between 0 and 5 Hz between these different pharmacological conditions. There is a substantial low-frequency component in the raw traces in C that are not affected by the different drug applications. We attribute these low frequencies to likely movement artifact, but some intrinsic signal components may also be present (not reflecting electrical activity). Note the latent period from stimulus to oscillation of about 1 s clearly shown in the LFP traces in C. Carb, carbachol; bic, bicuculline; stim, stimulus. Fig. S2. Traces without low-frequency filtering with and without CGP52432. (A) Signals from two example optical detectors (marked as 1 and 2 in Fig. S1), along with LFPs, under two drug conditions. Vertical scale: 2×10^{-3} of resting light intensity. Horizontal scale: 1 s. The solid blue lines mark out the stimulus time points. (B) Traces of optical detectors 1 and 2 in A were filtered between 5 and 30 Hz and denoised. Vertical scale: 2×10^{-3} of resting light intensity. (C) Power spectrum (logarithmic scale) for optical signals during a 6 s episode averaged across all detectors of nine slice experiments without low-pass filtering below 5 Hz. The blue dashed lines in traces of A and B are zero baselines. Carb, carbachol; bic, bicuculline.

Fig. S4. Theta oscillations were eliminated by CNQX. (A) Recording arrangement, with stimulation (stim) and local field potential (LFP) electrodes. Signals from one example optical detector (marked as a black filled circle in (A) with and without CNQX are shown as 6 s traces in B. The blue horizontal lines are zero baselines. Vertical scale: 2×10^{-3} of resting light intensity. (C) Two sections from the temporal data (I and II) in B are displayed as a sequence of pseudocolor images. Note there were no propagating waves during the recording period after CNQX was added.

Movie S1. Ring waves evoked by 1 μm bicuculline/100 μm carbachol (AVI).

Movie S2. Plane waves evoked by 5 μm bicuculline/100 μm carbachol (AVI).

Movie S3. Spiral waves (AVI).

Movie S4. Ring waves and collisions evoked by 10 μm bicuculline/100 μm carbachol (AVI).

Please note: As a service to our authors and readers, this journal provides Supporting Information supplied by the authors. Such materials are peer-reviewed and may be re-organised for online delivery, but are not copy-edited or typeset by Wiley-Blackwell. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

Acknowledgements

This work was supported by NIH grant R01MH079502. We are grateful to Weifeng Xu for helpful discussion.

Abbreviations

ACSF, artificial cerebrospinal fluid; CGP52432, 3-((3,4-dichlorophenyl)methyl)aminopropanol (diethoxymethyl) phosphinic acid; CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione; d-APV, d-(-)-2-amino-5-phosphonopentanoic acid; DMSO, dimethyl sulfoxide; LFP, local field potential; NBQX, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide; NMDA, N-methyl-D-aspartate; VSD, voltage-sensitive dye.

References

FIG. S1. Traces without low frequency filtering and including initial stimulation and latent period. (A) Recording arrangement. Signals from two optical detectors (marked as 1 and 2 filled circles) and local field potentials (LFPs), under 3 drug conditions are shown in (C). The blue dashed lines in traces of C are zero baselines. Vertical scale: 2×10^{-3} of resting light intensity. Horizontal scale: 1 second. The solid blue lines in C mark the stimulus delivery time points. (B) Power spectrum (logarithmic scale) for optical signals during a 6-second episode averaged across all detectors of 10 slice experiments without low frequency filtering. Note that there was no substantial difference in spectra between 0-5 Hz between these different pharmacological conditions. There is substantial low frequency component in the raw traces in C that are not affected by the different drug applications. We attribute these low frequencies to likely movement artifact, but some intrinsic signal components may be present as well (not reflecting electrical activity). Note the latent period from stimulus to oscillation of about 1 s clearly shown in the LFP traces in C. Carb: carbachol; bic: bicuculline; stim: stimulus.
FIG. S2. Traces without low frequency filtering with and without CGP52432. (A) Signals from two example optical detectors (marked as 1 and 2 in figure S1), along with LFPs, under 2 drug conditions. Vertical scale: 2×10⁻³ of resting light intensity. Horizontal scale: 1 second. The solid blue lines mark the stimulus time points. (B) Traces of optical detectors 1 and 2 in A were filtered between 5-30Hz and denoised. Vertical scale: 2×10⁻⁴ of resting light intensity. (C) Power spectrum (logarithmic scale) for optical signals during a 6-second episode averaged across all detectors of 9 slice experiments without low frequency filtering. The blue dashed lines in traces of A and B are zero baselines. Carb: carbachol; bic: bicuculline; CGP: CGP52432.
FIG. S3. Traces without low frequency filtering with and without D-APV. (A) Signals from two example optical detectors (marked as 1 and 2 in figure S1), along with LFPs, under 2 drug conditions. Vertical scale: 2×10^{-3} of resting light intensity. Horizontal scale: 1 second. The vertical solid blue lines mark out the stimulus time points. (B) Traces of optical detectors 1 and 2 in A were filtered between 5-30Hz and denoised. Vertical scale: 2×10^{-4} of resting light intensity. (C) Power spectrum (logarithmic scale) for optical signals during a 6-second episode averaged across all detectors of 8 slice experiments without low pass filtering below 5 Hz. The blue dashed lines in traces of A and B are zero baselines. Carb: carbachol; bic: bicuculline.
FIG. S4. Theta oscillations were eliminated by CNQX. (A) Recording arrangement. Signals from one example optical detector (marked as a black filled circle in A) with and without CNQX are shown as 6-second traces in (B). The blue horizontal lines are zero baselines. Vertical scale: 2×10^{-4} of resting light intensity. (C) Two sections from the temporal data (I and II) in B are displayed as a sequence of pseudocolor images. Note there were no propagating waves during the recording period after CNQX was added.