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A chaotic attractor containing unstable periodic orbits with different numbers of unstable directions is
said to exhibit unstable dimension variability (UDV). We present general mechanisms for the progressive
development of UDV in uni- and bidirectionally coupled systems of chaotic elements. Our results are
applicable to systems of dissimilar elements without invariant manifolds. We also quantify the sever-
ity of UDV to identify coupling ranges where the shadowability and modelability of such systems are

significantly compromised.
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The phenomenon known as unstable dimension variabil-
ity (UDV) refers to the presence of unstable periodic orbits
(UPOs) with different numbers of unstable directions em-
bedded within a chaotic attractor. Although first described
long ago [1], interest in UDV and its consequences has
grown recently [2—8], especially since it was observed in
a physically motivated model [9]. Severe UDV has pro-
found implications. The authors of Ref. [2] showed that
the presence of a Lyapunov exponent that fluctuates about
zero, a situation which arises in systems with a high degree
of UDV, causes severe shadowing difficulties. This means
that the significance of numerically generated trajectories
is called into question: a long numerical trajectory may not
correspond to any mathematically true solution of the un-
derlying equations. More recently, it has been argued that
systems that exhibit UDV may be, in principle, determinis-
tically unmodelable [3]. Thus, it is very important to have
an understanding of what conditions lead to the occurrence
of UDV, and how UDV develops as these conditions are
approached.

In this paper we present a detailed analysis of the mecha-
nisms that lead to the development of UDV as synchro-
nized coupled chaotic systems desynchronize. In addition,
we quantify the degree of UDV as a function of coupling
and find significant ranges of coupling where UDV is so
severe that even very short numerically generated trajec-
tories are suspect. Our results are novel in that they are
applicable to coupled systems that do not possess inher-
ent symmetries and/or synchronization manifolds, such
as coupled systems with dissimilar elements. We draw
particular attention to this case, since it represents almost
every experimental situation of interest: in practice, it
is very difficult to prepare sets of truly identical oscilla-
tors in physical experiments, and, in biological systems,
natural oscillators occur with considerable variability (for
example, note the large variety of different neurons in the
brain).

We begin with a “subsystem” decomposition of a gen-
eral unidirectionally coupled system of chaotic maps (we
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discuss the bidirectionally coupled case subsequently):

{X*f(x)

y— Gx,y;c). (1a)

We assume that at ¢ = 1 the x and y dynamics are in
generalized synchrony [10], and that at ¢ = 0 the x and
y dynamics are chaotic and independent of one another.
f and G may be of any dimension. For ease of presenta-
tion, we use the simplest case

G(x,y;c) =cf(x) + (1 — c)g(y)

and take f and g to be quadratic maps with different pa-
rameters in our discussion below. Our arguments, however,
are not specific to these choices.

The subsystem decomposition of Eq. (1) is defined as
follows [11]. First, enumerate the periodic orbits of f (the
driver), assigning each an index i = 1,2,.... Then sub-
system S; is given by Eq. (1), but with the driver dynamics,
f(x), locked on orbit i. We are interested in investigating
the dynamics of individual subsystems. Note that because
the driver is chaotic, an x trajectory will come arbitrarily
close to (and spend an arbitrarily long time near) any of
the unstable periodic orbits embedded within its attractor.
Thus, subsystem S; contains the dynamics that the full-
system trajectory experiences during close approaches to
orbit i.

As the coupling c¢ is varied, each subsystem S; ex-
hibits an independent bifurcation structure in its y com-
ponent. Each of these begins at ¢ = 1 with x and y
synchronized at the driving periodic orbit and progresses
(via period-doubling sequences, etc.) to the chaotic dy-
namics of g at ¢ = 0. To illustrate, let f(x) = 1.9 — x?
and g(y) = 1.6 — y?, both of which are chaotic. The top
panels in Fig. 1 show partial bifurcation diagrams of sub-
systems that are driven by a period-3 and a period-4 driver.
A vertical line is superimposed on each figure at ¢ = 0.16.
At this particular coupling value, the period-3 subsystem
(a) exhibits an attracting periodic orbit (of period 9), while
the period-4 subsystem (b) exhibits chaos. The bottom

(1b)
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FIG. 1. Unstable dimension variability for Eq. (1) with f(x) =
1.9 — x? and g(y) = 1.6 — y2. The top panels show partial
bifurcation diagrams of subsystems with (a) a period-3 and
(b) a period-4 driver; the vertical lines are placed at ¢ = 0.16.
The bottom panel shows the overall attractor at this coupling
value with the subsystem dynamics superimposed. Triangles de-
note a period-9 saddle [attracting orbit shown in (a)]; circles de-
note an infinite number of repellers [chaotic orbit shown in (b)].

panel shows the attractor for the overall coupled system.
The asymptotic trajectories of the period-3 and period-4
subsystems are superimposed with triangles and circles,
respectively.

We now argue that UDV is present in the example con-
sidered above, with ¢ = 0.16. The period-3 subsystem is a
periodically forced one-dimensional quadratic map in the
y variable. For ¢ = (.16, it has an attracting period-9 or-
bit ¢ whose stable set is an interval /, in y (approximately
[—2,2]; compare scales in Fig. 1). Viewed as an orbit of
the original coupled map, Eq. (1), g is a saddle UPO. In
particular, it has one stable direction along y, since its cor-
responding subsystem is attracting, and one unstable direc-
tion (with a nonzero projection along x), since f is chaotic.
Correspondingly, the period-4 subsystem with ¢ = 0.16
has a one-band chaotic attractor A in y whose stable set
I, is also an interval in y (again, approximately [—2,2]).
From similar arguments we conclude that A is a chaotic
saddle of Eq. (1) and thus contains a dense set of repellers
with two unstable directions (this is the one-dimensional
version of the situation described in [7]).

Viewed in the full space of Eq. (1), the stable sets of
g and A take on an additional complication. That is,
the stable set of g (A) is the direct product of the set of
preimages of the driving period-3 (4) orbit and the union
of the appropriate preimages of I, (I4) [12]. Both these
stable sets intersect the full attractor (compare /; and I, to
Fig. 1), and thus both ¢ (saddle UPO) and A (containing
repeller UPOs) are embedded within it.

Finally, we argue that g and A are recurrently connected
in the sense of Ref. [7]. From the previous discussion, the
stable sets of ¢ and A are at least one dimensional since
they contain a collection of intervals. Furthermore, the
unstable sets of ¢ and A are also at least one dimensional,
as can be seen by considering the evolution of a small
interval in x centered around either g or a repeller within A.
Because two lines generically intersect in two dimensions,
we conclude that the stable set of ¢ intersects the unstable
set of A and that the unstable set of ¢ intersects the stable
set of A. These intersections are typically not destroyed
by small perturbations. Thus we expect trajectories to visit
both ¢ and A recurrently.

These arguments establish UDV for Eq. (1) with ¢ =
0.16. Other subsystems can be used in a similar manner
to establish the simultaneous presence of additional saddle
and repeller UPOs in the attractor; see Table I. We confirm
the presence of UDV in the full two-dimensional system
by observing that the second largest finite-time Lyapunov
exponent fluctuates about zero (inset in Fig. 2).

We now use the subsystem decomposition of Eq. (1) to
elucidate two distinct mechanisms for the development of
UDV as the coupling is varied from 1 to O and the sys-
tem desynchronizes. According to the subsystem decom-
position, we think of each subsystem as a separate chaotic
system with its own bifurcation structure, but with all sub-
systems sharing the coupling c as the bifurcation parame-
ter. For ¢ = 1, the overall dynamics is (by construction)
attracted to the diagonal x = y, and each subsystem S;
collapses onto an orbit of period equal to that of its driver
orbit. As c is decreased, a bifurcation analogous to the
bubbling transition occurs [13]. At this critical value of
coupling, one particular subsystem (typically with a low-
period driver) undergoes a bifurcation which converts the
previously stable orbit to an unstable one. When viewed
as a UPO of the combined system, this orbit is unstable in
both the x and y directions. This is the first repeller UPO
to appear, and this bubblinglike transition marks the first
appearance of UDV.

As c is further decreased, other subsystems undergo
similar bifurcations that create additional repellers. Mean-
while, the unbifurcated subsystems contribute saddle

TABLE 1. Largest Lyapunov exponents of several subsystems
with drivers of periods 1-10 for f(x) = 1.9 — x2, g(y) =
1.6 — y%, and ¢ = 0.16. A negative Lyapunov exponent im-
plies the presence of a saddle UPO in the attractor; a positive
exponent implies the presence of an infinite number of repeller
UPOs.

Driver Lyapunov Driver Lyapunov
period exponent period exponent
1 —0.038 6 —0.394, 0.171
2 0.185 7 —0.145, 0.176
3 —0.363 8 —0.306, 0.143
4 0.167 9 —0.141, 0.103
5 —0.014, 0.159 10 —0.130, 0.187
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UPOs to the overall attractor. This is the first mechanism
for the development of UDV. If the coupled system
possesses an inherent symmetry, as when the coupled
elements are identical, all of these orbits reside on an in-
variant synchronization manifold that contains the overall
attractor; this is essentially the case studied in Ref. [3].
Our subsystem analysis, however, is not restricted to
systems with such symmetries. More importantly, we
argue below that the dominant contribution to severe UDV
comes from the set of new orbits created as the various
subsystems bifurcate.

As c is further decreased, still more subsystems bifur-
cate as described above. Meanwhile, a second parallel
mechanism proceeds: the new orbits that are created as
each individual subsystem bifurcates (usually via period
doubling) undergo cascades of period doublings to chaos,
apparently independently of one another. This process cre-
ates a huge number of new saddle and repeller UPOs in the
overall system. We call the set of new orbits created in this
way the emergent set. For f = g, these orbits reside out-
side the attractor until the blowout bifurcation [14]. How-
ever, in the more general case f # g, the destruction of the
synchronization manifold (present only at ¢ = 1) leads to
the incorporation of most of the emergent set into the at-
tractor [11]. Thus, for f # g, the combination of the two
mechanisms outlined above leads to a dramatic increase
in UDV. We believe that UDV is most severe once the
system has lost topological coherence [11] and the emer-
gent set dominates the overall dynamics.

We conjecture that there is a set C of positive Lebesgue
measure consisting of coupling values ¢ at which some
subsystems exhibit attracting periodic orbits while simul-
taneously other subsystems exhibit chaos. At such values
of ¢ € C, one can deduce by the arguments above that
the attractor of the coupled system exhibits UDV. This
implies that UDV can and will be encountered in prac-
tice when studying generic coupled chaotic systems, and
thus the potential for severe shadowing and/or modeling
breakdown is an important consideration for researchers
investigating such systems.

It is reasonable to expect that C has positive measure in
light of the results of Refs. [15—17]. Jacobson [15] proved
that in the quadratic family, the set of parameter values that
gives rise to chaos has positive measure. Thus, if we as-
sume that at a particular fixed value of ¢, the various sub-
systems are in some sense at random positions in each of
their respective bifurcation diagrams (as numerical investi-
gations suggest), then there is a positive probability that at
least some subsystems exhibit chaos and thus contribute re-
pellers to the overall attractor. On the other hand, Graczyk
and éwigtek [16] proved, also for the quadratic family, that
windows (i.e., parameter intervals that yield periodic be-
havior) occur densely in the parameter space. Thus it is
also reasonable to expect that for the same fixed value of ¢,
at least some subsystems exhibit attracting periodic orbits
and therefore contribute saddles to the overall attractor.
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It is generally believed that the results of Refs. [15,16]
carry over to higher dimensional situations in sufficiently
high-dimensional parameter spaces [17].

Our arguments in this work do not rely on any specific
features of f and G, other than that they are chaotic and
that they desynchronize as the coupling between them is
reduced to zero. Thus, the mechanisms for the creation of
UDV in coupled systems described here is very general.
In the case of bidirectionally coupled chaotic systems, dis-
tinct subsystems cannot be easily defined. Nevertheless,
mechanisms similar to those described here can be ob-
served [18]. More specifically, as a bidirectionally coupled
system desynchronizes, the unstable periodic orbits em-
bedded in the synchronized chaotic attractor lose trans-
verse stability, typically via period-doubling bifurcations
(mechanism 1); simultaneously, the new orbits created in
this fashion undergo their own period-doubling cascades
to chaos (mechanism 2). In contrast to the unidirectional
case, these bifurcation sequences do not proceed indepen-
dently. Instead, they interfere with each other and can lead
to attractor crises [19] in the overall system. For example,
such crises may lead to the destruction of the chaotic at-
tractor and its replacement by an attracting periodic orbit.
(In this case, however, a nonattracting chaotic set would
remain containing UDV.)

In the following, we quantify the degree of UDV and
measure its evolution as a function of coupling. We con-
sider both system (1) and a bidirectionally coupled case.
For the latter, we use x — (1 — ¢)f(x) + cg(y) and take
y as in Eq. (Ib). To quantify UDV, a contrast measure,
defined for orbits of a given fixed period, has been pro-
posed [5]. Here, we use the methods of Ref. [4] to esti-
mate the expected shadowing time. In effect, this takes
UPOs of all periods into account at once. More impor-
tantly, the expected shadowing time is a physically relevant
quantity that estimates the limitations of computer-based
calculations.

The authors of Ref. [4] use a random walk approach to
model the distribution of pointwise shadowing distances,
i.e., the pointwise distances from a numerically generated
trajectory to its corresponding mathematically true “shad-
owing” orbit. The random walk, which includes a drift
towards a reflecting barrier at the noise level, draws its pa-
rameters from the distribution of the finite-time Lyapunov
exponent closest to zero. This is reasonable because the
pointwise shadowing distance grows precisely when trajec-
tories alternate between regions with different numbers of
unstable directions. As the degree of UDV increases, such
alternations occur more frequently. The expected shad-
owing time is calculated as the first-passage time for the
shadowing distance to grow to the attractor size. In par-
ticular, the expected shadowing time may be estimated as
10PE, where p is the number of digits of accuracy in the
numerical computation and £ = % Here, m and o are
the mean and variance of the distribution of the finite-time
Lyapunov exponent closest to zero [20].
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Figure 2 shows the exponent E versus coupling for our
two example systems, with f(x) = 1.9 — x? and g(y) =
1.6 — y2. The horizontal lines correspond to expected
shadowing times of 10® and 10° iterations, assuming a
calculational accuracy of 107!6. The solid curve repre-
sents the unidirectionally coupled case; the dotted curve
with circles is the bidirectionally coupled data. In both
cases, there is a significant range of coupling for which E
is very small, thus indicating severe UDV and very short
shadowing times. E is calculated using 10000 time-50
Lyapunov exponents at each value of coupling; error bars
indicate the standard deviation of 20 measurements. The
arrows indicate ranges of coupling values over which E is
not graphed for the bidirectional case: within most of this
range the system exhibits stable periodic behavior, and at
the small-coupling end of the left arrow, these orbits pe-
riod double into a small two-piece chaotic attractor which
explodes into the full attractor just below ¢ = 0.09. The
shaded region corresponds to shadowing times shorter than
50 iterations.

Finally, numerically generated trajectories of systems
with very short shadowing times may visit regions of the
phase space with a frequency that is different from the
system’s true natural measure. Thus, infinite-time dy-
namical averages such as Lyapunov exponents, dimen-
sions, and entropies may not be accurate in such cases.
To our knowledge there are no quantitative results link-
ing expected errors for infinite-time averages to estimated
shadowing times (related work is reported in [6]). On the

o
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FIG. 2. Shadowing time exponent E versus coupling (inset:
distribution of the time-50 Lyapunov exponent closest to zero
for ¢ = 0.16, unidirectional case). The solid curve represents
the unidirectionally coupled case; the dotted curve with circles
is the bidirectionally coupled data. Horizontal lines indicate
expected shadowing times of 10° and 107 iterations, assuming
a calculational precision of 107!, Arrows indicate ranges of
coupling values over which E is not graphed for the bidirectional
case; see text.

other hand, time-T averages for T less than the expected
shadowing time (such as E values falling outside of the
shaded box in Fig. 2) should be reliable.
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