
PHYSICAL REVIEW E 88, 042712 (2013)

Dynamical structure underlying inverse stochastic resonance and its implications
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We investigate inverse stochastic resonance (ISR), a recently reported phenomenon in which the spiking
activity of a Hodgkin-Huxley model neuron subject to external noise exhibits a pronounced minimum as the
noise intensity increases. We clarify the mechanism that underlies ISR and show that its most surprising features
are a consequence of the dynamical structure of the model. Furthermore, we show that the ISR effect depends
strongly on the procedures used to measure it. Our results are important for the experimentalist who seeks to
observe the ISR phenomenon.
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I. INTRODUCTION

The spiking of a neuron can be thought of as a stochastic
process due to the presence of various sources of noise [1].
Stochasticity is manifested most obviously by the highly
variable spike train patterns of neurons in vivo produced by a
repeated sensory input [2,3] and by the spontaneous neuronal
activity in the absence of any stimuli [4,5]. Noise can also
enrich the stochastic dynamics of neuronal ensembles and
facilitate the information processing capabilities of neurons.
For example, stochastic resonance (SR) is a well-known
phenomenon by which the weak-signal processing ability of
neurons can be enhanced [6–9]. Previous experimental and
theoretical studies have suggested that noise can improve the
detection, integration, and transmission efficiency of signals,
and induces many complex behaviors such as synchronization
and burst firing [10–13].

On the other hand, some recent works have been concerned
with the inhibitory effects of noise on neuronal activity,
particularly on rhythmic firing. Paydarfar et al. [14] studied
the influence of noise on neuronal pacemakers in an in vitro
preparation of squid axon and found that small noisy currents
can induce on-off switching behavior between repetitive firing
and quiescence. They also showed that the timings of the
switching depend on the intensity and spectral properties of the
noisy current. Gutkin, Tuckwell, and Jost [15,16] investigated
an inhibitory effect of noise in a single Hodgkin-Huxley model
neuron. They reported that for a range of mean input current
densities near the critical value that leads to rhythmic firing,
there exists a minimum—or even silence—in spiking activity
for a moderate range of noise intensities. (Earlier work by
the same authors considered a similar effect in a pair of
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reciprocally coupled model neurons [17].) By analogy with
stochastic resonance, the authors called this noise-dependent
minimum in firing rate “inverse stochastic resonance” (ISR).
Recently, Guo [18] investigated the impact of noise structure
on ISR and found that the inhibitory effect of colored noise
is stronger than that of the Gaussian white noise studied in
Refs. [15,16]. Tuckwell and Jost [19] extended the subject to a
spatially extended Hodgkin-Huxley system and showed that if
the noise and signal (mean current) are uniformly distributed
along the whole spatial extent of the neuron, weak noise could
strongly inhibit the occurrence of rhythmic spiking, but not its
propagation. However, when the noise and signal are applied
to separate regions of the neuron, the noise has no effect on
either rhythmic spiking or the propagation of spikes.

In these modeling studies [14–16,18,19], noise was incor-
porated by adding an external additive noisy current. A more
realistic biophysical approach is to consider the channel noise
that results from the stochastic dynamics of voltage-gated
ion channels, i.e., the random transitions between open and
closed states. (See also Ref. [20], where noise from synaptic
background activity with unreliable synapses was considered.)
Much work has been devoted to understanding the role of
channel noise on neuronal dynamics, and it has been shown
that channel noise can modify excitability, cause spontaneous
firing, induce synchronization in neural networks, improve
performance of SR, and result in variability of spike timing as
well as interspike intervals [21–25].

Here, we consider the ISR phenomenon in the Hodgkin-
Huxley neuron using this approach. We explicitly model noise
as resulting from the stochastic nature of voltage-gated ion
channels embedded in the neuronal membrane. We assume a
fixed channel density so that the intensity of channel noise is
inversely related to membrane area. Our results show that the
ISR phenomenon is also present in this more biophysical case.
However, we will argue below that any reasonable model of
noise can be used to elicit the ISR phenomenon.

Our main contribution in this work is to analyze and
clarify the mechanism that underlies ISR from a nonlinear
dynamics perspective. We show that the most surprising
feature—the increase in average firing rate as noise decreases
(or membrane area increases)—is a consequence of both the
dynamical structure of the model and the particular measuring
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procedures used. This means that different ways of measuring
the ISR effect yield quantitatively and potentially qualitatively
different results. We demonstrate this explicitly and confirm
our interpretation with a simple theoretical calculation.

II. MODEL AND METHODS

The original Hodgkin-Huxley model describes the time
evolution of the transmembrane potential in terms of mem-
brane currents as follows [26]:

Cm

dV

dt
= −GNa(m,h)(V − ENa) − GK (n)(V − EK )

−GL(V − EL) + I0, (1)

where V represents the membrane potential in millivolts, and
Cm = 1 μF/cm2 is the membrane capacitance per unit area.
I0 is a constant external current stimulus in μA/cm2 and is
used for the modulation of neuronal excitability. Here, since
we assume that the source of noise is primarily internal, I0

represents either an injected current or a constant average
synaptic input to the neuron. GNa, GK , and GL denote sodium,
potassium, and leak conductances, respectively. The param-
eters ENa = 115 mV, EK = −12 mV, and EL = 10.6 mV
are the corresponding reversal potentials. In the model, the
leakage conductance is assumed to be constant, with GL =
0.3 mS/cm2, while the sodium and potassium conductances
change dynamically according to the following equations:

GNa(m,h) = gmax
Na m3h (2)

GK(n) = gmax
K n4, (3)

where gmax
Na = 120 mS/cm2 and gmax

K = 36 mS/cm2 are the
maximal sodium and potassium conductances, respectively.
Moreover, m and h stand for the activation and inactivation
gating variables for the sodium channel, respectively, and the
potassium channel includes an activation gating variable n.

To incorporate channel noise into the HH model, different
computational algorithms have been proposed by various
groups [22–24,27]. In the present study, we use the well-known
algorithm of Fox [27], because it is widely used and is more
computationally efficient than other algorithms. According
to this approach, the gating variables obey the following
Langevin generalization:

dx

dt
= αx(1 − x) − βxx + ξx(t), (4)

where αx and βx (with x = m,n,h) are the experimentally
determined voltage-dependent rate functions for the gating
variable x and can be found in Refs. [26,27]. The stochastic
nature of the channels appear via the independent Gaus-
sian noise sources ξx(t) in Eq. (4) with 〈ξx(t)〉 = 0 and
〈ξx(t)ξx(t ′)〉 = Dxδ(t − t ′), for x = m,n,h. The Dx denote the
intensities of the various channel noises, which are inversely
proportional to the total number of channels of each type in a
membrane patch of area A, as follows [27]:

Dm = 2

NNa

αmβm

αm + βm

(5)

Dh = 2

NNa

αhβh

αh + βh

(6)

Dn = 2

NK

αnβn

αn + βn

, (7)

where NNa and NK represent the total number of the sodium
and potassium channels within the membrane patch. Assuming
homogenous sodium and potassium ion channel densities
ρNa = 60 μm−2 and ρK = 18 μm−2, the total number of chan-
nels is NNa = AρNa and NK = AρK [27–30]. Equations (1)–
(7) constitute the stochastic Hodgkin-Huxley model, where
the membrane area A globally determines the intrinsic noise
level.

Numerical integration of our system was carried out using
the standard Euler algorithm with a step size of 10 μs.

III. RESULTS

We begin by showing that our channel-noise model repro-
duces the previously reported ISR phenomenon. Following
the procedure in Ref. [16], we calculate the average firing
rate of our model neuron for fixed values of membrane area
A and input current I0 as follows. First, an initial condition
is randomly selected with uniform probability within a fixed
region of the four-dimensional state space (V , m, n, and h),
which we call the state space sample volume. Specifically,
this region ranges from −10 to 80 mV for the transmembrane
voltage variable V , and from 0 to 1 for the each of the gating
variables m, n, and h. Then, the system [Eqs. (1)–(7)] is
integrated for a time T . After this, we count the number of
spikes Nspikes that occur in an additional time interval of length
τ . Each spiking event is defined by the upward crossing of the
membrane potential past a threshold of 20 mV. This entire
procedure is repeated N times, and an average spiking rate is
calculated as

r (A,I0) = 1

Nτ

(
N∑

i=1

Nspikes,i

)
, (8)

where the index i refers to each trial.
In Fig. 1(a), r is plotted versus the membrane area A for

I0 = 6.8 μA/cm2, T = 1 s, τ = 5 s, and N = 1000. Since the
membrane area is inversely proportional to the channel noise
intensity, weak noise is to the right, and the noise intensity
increases toward the left. Note that the average firing rate is
lowest for moderate values of the noise intensity. This is the
ISR phenomenon.

The error bars represent the standard deviation at each
point. Figures 1(b) and 1(c) show histograms of Nspikes for
A = 750 μm2 and 30 000 μm2, respectively. These values
correspond to the tick marks on the horizontal axis in
Fig. 1(a). The starkly bimodal distribution shown in Fig. 1(c) is
representative of the distributions for all the corresponding data
points for which A � 1500 μm2, except where the average is
small. In those cases, the peak at zero dominates.

To understand this phenomenon, we examine the nature
of the solutions during the time intervals in which the spikes
are counted. Several voltage traces for I0 = 6.8 μA/cm2 and
A = 750 μm2 are shown in Fig. 2(a). Each trace originates
from a randomly chosen initial condition as described above
and shows the neuron’s behavior after the transient time
T has passed. Many random noise-induced transitions from
resting to spiking and vice versa can be seen. Accordingly,
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FIG. 1. (a) Inverse stochastic resonance. The average firing rate
r is plotted versus the membrane area A for I0 = 6.8 μA/cm2. For
each value of the membrane area, N = 1000 trajectories starting
from randomly chosen initial conditions were obtained as described
in the main text. The average firing rate was calculated based on
the number Nspikes of spikes that occur in a τ = 5-s window, after
discarding the initial T = 1-s transient. The error bars represent the
standard deviation. Since the noise intensity is inversely proportional
to the membrane area, weak noise is to the right (large membrane
area), and stronger noise is to the left (small membrane area). The
dip in the curve suggests an inverse resonance. (b), (c) Histograms
of Nspikes corresponding to A = 750 μm2 and 30,000 μm2. These
values are marked by the large tick marks on the horizontal axis in
panel (a).

the distribution of Nspikes that enters into the calculation of
the average in Eq. (8) is bell-shaped [see Fig. 1(b)], and the
corresponding error bar shown in Fig. 1(a) is small.

In sharp contrast, Fig. 2(b) shows that very different
behavior occurs for A = 30 000 μm2. This corresponds to
the right side of the ISR curve where the noise is smaller. In
this case, most trajectories exhibit either spiking or resting for
the duration of the trace. Only two traces show a transition
from spiking to resting, and no traces show transitions from
resting to spiking. Furthermore, there are many trials for which
Nspikes = 0. Consequently, the distribution of Nspikes is far from
Gaussian [see Fig. 1(c)], and the corresponding error bar shown
in Fig. 1(a) is misleadingly large. This is true for all the large
error bars in Fig. 1(a). Subsequent figures will not include error
bars for this reason.

The switching behavior described above suggests that at-
tractors corresponding to resting and spiking behavior coexist,
as has been noted in earlier publications. Figure 3 shows a

(a)                                                                (b)

100 msec
120 mV

 100 msec
120 mV

FIG. 2. Sample voltage traces at I0 = 6.8 μA/cm2 with mem-
brane area (a) 750 μm2 and (b) 30 000 μm2 (see the tick marks on
the horizontal axis in Fig. 1). The traces were obtained from separate
trials with randomly chosen initial conditions as described in the text.

FIG. 3. Bifurcation diagram of the deterministic Hodgkin-Huxley
neuron. Heavy (light) solid lines represent stable (unstable) equilibria.
Solid (open) circles represent the asymptotic minimum and maximum
values of the voltage during stable (unstable) spiking behavior. (b) A
magnification of (a), revealing the multistable region.

bifurcation diagram that confirms this. In Fig. 3(a), the asymp-
totic behavior of the noise-free neuron’s voltage is plotted
versus the input current I0, and Fig. 3(b) shows a magnification
of the multistable region. For values of I0 below 6.26 μA/cm2,
the only attractor is a stable equilibrium. This corresponds to
resting behavior. At I0 = 6.26 μA/cm2, stable and unstable
limit cycles are created by saddle-node bifurcation. The stable
limit cycle corresponds to spiking behavior. For increasing
values of I0, the stable limit cycle does not change very much
in the range shown in Fig. 2(b). In contrast, the unstable
limit cycle shrinks and eventually collapses onto the stable
equilibrium in a subcritical Andronov-Hopf bifurcation at
I0 = 9.78 μA/cm2. Between these two bifurcations, the stable
resting equilibrium and the stable spiking limit cycle coexist.

Within this multistable region, noise of sufficient intensity
can cause the switching behavior discussed above. In Fig. 4,
we show the n − V projections of the limit cycles and
the equilibrium that are present for I0 = 6.8 μA/cm2, with
magnifications in the vicinity of the equilibrium shown in
the right panels. In addition, short segments of representative
noisy trajectories are superimposed using the same projection,
with A = 750 μm2 (large noise) in the top panels, and
A = 30 000 μm2 (small noise) in the bottom panels. These
are the same parameters that were used in Fig. 2. Note that the
projections of spiking behavior are traversed in a clockwise
fashion. The corresponding voltage traces are shown as insets
in the left panels for reference.

The top panels of Fig. 4 show that the large-noise trajectory
switches back and forth between spiking and resting behavior.
When spiking, the noisy trajectory approximately follows
the deterministic stable limit cycle. When not spiking, the
trajectory occupies a dispersed noisy cloud in the general
vicinity of the equilibrium. The size of this cloud is on the
order of the distance between the equilibrium and the limit
cycle, and hence, transitions from resting to spiking behavior
occur frequently. In contrast, the lower panels show a trajectory
with much smaller noise. This trajectory begins in the spiking
state, and it follows the stable limit cycle much more closely
[compare Figs. 4(a) and 4(c)], until a noise fluctuation occurs
of sufficient size and in just the right part of the cycle to kick the
trajectory into the basin of the equilibrium [31]. It then spirals
in toward the equilibrium, which is a focus, and hovers around
the equilibrium. However, in this smaller-noise case, the noisy
cloud that it occupies is very much smaller than the distance
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FIG. 4. (Color online) n − V projections showing spiking/resting
transitions for A = 750 μm2 [panels (a) and (b); large noise] and
A = 30,000 μm2 [panels (c) and (d); small noise]. Insets in (a) and
(c) show voltage traces of the same data, and panels (b) and (d)
are magnifications of (a) and (c), respectively. In all cases, I0 =
6.8 μA/cm2. Stable (solid) and unstable (dashed) limit cycles are
shown in black; a stable resting equilibrium is also present. (a), (b)
Relatively strong noise causes transitions back and forth between the
two deterministically stable states. (c), (d) Here, the noise is relatively
small. The spiking trajectory periodically approaches a critical region
where noise might kick the state into the basin of the equilibrium.
When it does so, the trajectory spirals into the equilibrium, which is
too far from the basin boundary for the small noise to reignite spiking.

between the equilibrium and the limit cycle. Thus, it remains
there, essentially forever: noise fluctuations of sufficient size
to kick the trajectory back into the spiking state are extremely
unlikely to occur in this case.

Transitions from spiking to resting are most likely to occur
where the stable and unstable limit cycles are very close,
and where both are close to the equilibrium. Note that in
the spiking state, the trajectory repeatedly visits this critical
region, which is near the “nose” on the left in Fig. 4. Thus,
it has multiple opportunities to cross the basin boundary and
fall into the equilibrium, even for very small noise. In contrast,
for a transition from resting to spiking to occur, noise alone
must cause a fluctuation of sufficient size to overcome the
separation between the equilibrium and basin boundary. As
noise decreases, this becomes less and less likely.

Accordingly, we hypothesize that depending on the initial
condition and for sufficiently small noise intensity, trajectories
either (1) approach the equilibrium and remain there, effec-
tively forever, or (2) approach the spiking limit cycle and
track it for a finite time before noise causes it to transition
to the equilibrium, where it subsequently remains, effectively
forever. This hypothesis suggests that if the initial transient
time T is chosen to be longer, then more trajectories that were
tracking the limit cycle should undergo the transition to the
resting state and then stay there. Consequently, the average
firing rate (which is calculated after the transient time T has

FIG. 5. (Color online) ISR curves obtained after discarding
initial transients of length T seconds, for A = 30 000 μm2, I0 =
6.8 μA/cm2, τ = 5 s, N = 1000, and various value of T . Initial
conditions are chosen randomly. For small noise, trajectories starting
in the basin of the spiking limit cycle spike for long times before being
kicked to the resting state. By discarding longer transients, more such
trajectories fall into quiescence, hence lowering the average firing
rate.

passed) should decrease as the transient time T is increased,
at least in the small noise (large membrane area) regime.

Figure 5 shows the results of performing this test. ISR
curves similar to that in Fig. 1 were calculated for various
values of the transient time T , ranging from 0 to 50 s. It is
evident that for membrane areas larger than 1000 μm2, the
average firing rates are indeed smaller for larger values of T .
In fact, four of the five curves fall to zero Hz, and the range of
membrane area over which this is seen increases with longer
transient times T .

However, as these curves approach the right side of the
figure, they rise back up to moderate firing rates. This seems
surprising because the right side represents the lowest values
of noise that we tested. This behavior can be understood by
noting that for decreasing noise intensities, the probability
for a spiking trajectory to transition to the resting equilib-
rium decreases. Thus, for lower noise intensities, spiking
trajectories tend to spike for longer times. In the case of the
extreme right side of Fig. 5, the noise is so small that spiking
trajectories typically continue to spike for times in excess of
the sum of the transient and measurement times, T + τ , that we
tested.

The protocol that we used to calculate the average firing
rates was based on that used in Ref. [16], and it suggests
that the average firing rates for the zero noise limit can be
predicted. In particular, the initial conditions were selected
randomly based on a uniform distribution within a particular
region of state space. Let Pspiking be the probability of
randomly selecting an initial condition from the state space
sample volume that is in the basin of attraction of the
spiking limit cycle, and let Pequilibrium be similarly defined,
so that Pspiking + Pequilibrium = 1. Then, since trajectories that
asymptote to the resting equilibrium do not contribute to the
rate calculated in Eq. (8), the predicted firing rate is simply
rpredicted(I0) = PspikingR, where R is the deterministic firing
rate corresponding to the noise-free spiking limit cycle that is
present with input current I0. This is easily measured.
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FIG. 6. (Color online) (a) ISR curves for different input currents
I0 as indicated by the numbers on the right (in μA/cm2). τ = 5 s, and
N = 1000. In the low noise limit, the curves approach asymptotic
values of average firing rate that can be predicted. (b) Enlargement of
the right side of (a), showing the approach to the predicted asymptotic
average firing rates, which are indicated by the labeled black lines.

Because initial conditions are randomly chosen uniformly
in the state space sample volume, we can estimate Pspiking by
measuring the fraction of the state space sample volume that
is in the basin of the spiking limit cycle. That is, Pspiking =
Vspiking/Vtotal, where Vtotal is the volume of the entire state
space sample volume, and Vspiking is the volume of only the
portion that is within the basin of the spiking limit cycle. To
do this, we selected an ensemble of initial conditions using a
regularly spaced four-dimensional grid that spanned the entire
state space sample volume. The membrane voltage variable V

was sampled every 10 mV, and the gating variables were each
sampled every 0.01, for a total of ntotal = 107 initial conditions.
Each such initial condition was then integrated using our model
with no noise for a time sufficient to determine if it ultimately
approached the limit cycle or not. The number nspiking of such
initial conditions that were attracted to the spiking limit cycle,
divided by ntotal, is then an estimate of Pspiking, and the predicted
firing rate is

rpredicted (I0) ≈
(

nspiking

ntotal

)
R. (9)

This analysis is confirmed in Fig. 6, which shows several
ISR curves calculated as described above for different values
of the input current I0. Note that the input currents are all
from the bistable region shown in Fig. 3(b), except I0 =
5.5 μA/cm2, for which no ISR effect is seen. For decreasing
noise (i.e., increasing membrane area), the curves approach
a plateau. This is magnified in Fig. 6(b), which also shows
lines corresponding to the predicted deterministic firing rates
of Eq. (9). The measured firing rates are in good agreement
with the predicted rates for membrane areas larger than
approximately 50 000 μm2.

IV. DISCUSSION

In this work, we build on the results reported in Refs. [15,16]
by describing the underlying dynamical structure and explor-
ing its consequences. The ISR phenomenon was originally
described using additive noise applied to either the voltage
equation directly or to an excitatory synaptic term in the
Hodgkin-Huxley model neuron. We began the current investi-
gation by demonstrating that the ISR phenomenon also occurs
when ion channel noise—the noise that occurs due to a finite

number of stochastic ion channels—is implemented using the
algorithm of Fox [27]. (To our knowledge, this is the first such
demonstration, thus answering a question that was raised in
Ref. [32].) Recently, it has been shown that the Fox algorithm
does not capture certain aspects of real channel noise, and more
realistic algorithms based on elaborate Markov processes have
been proposed [33–35]. We confirmed that ISR also occurs
with channel noise implemented as described in Ref. [33].
We do not report these results in detail, however, because we
found that the ISR phenomenon can be explained in terms of
the system’s dynamical structure. Thus, we expect that ISR
behavior would occur using any of these more realistic models
of channel noise, or indeed, with any reasonable kind of noise.

The key insights are that, in the parameter region where
the ISR effect occurs (and for the deterministic system),
(1) the spiking limit cycle coexists with the stable resting
equilibrium, (2) the basin boundary is relatively close to the
stable limit cycle, and (3) the equilibrium is relatively far from
the basin boundary. This deterministic structure gives rise, in
the presence of small noise, to a significant asymmetry in the
probabilities of transitions occurring from spiking to resting,
and vice versa. As we described above, when this structure
is present and there is small noise, it is much more likely to
observe a transition from spiking to rest, than the reverse. A
trajectory that begins by exhibiting spikes repeatedly visits
a critical region near the basin boundary where a small noise
fluctuation can cause it to be trapped, effectively forever, by the
resting equilibrium. For example, see the small noise sample
traces of Fig. 2(b) and the phase-space projections of Figs. 4(c)
and 4(d). This explains the ISR phenomenon.

The presence of the deterministic dynamical structure
described in the previous paragraph is dictated by the input
current I0. Figure 3 shows that this multistable structure only
occurs in the small interval from (approximately) 6.26 to
9.78 μA/cm2. Thus, the ISR effect can only occur if I0 is
within this range and if small noise is present. In Ref. [36],
the ISR phenomenon was investigated in a spatially extended
Hodgkin-Huxley model neuron modeling a soma and axon. In
that study, the input current and the current noise were applied
independently and in various spatial locations, sometimes
overlapping and sometimes not overlapping. It was noted that
spikes elicited by an input current applied to the somatic region
(i.e., one end of the cable) could generally propagate along
the axon. However, if small noise coincided spatially with
an appropriately tuned input current, spike propagation would
fail, yielding the ISR effect. Furthermore, the effect was not
seen when the noise did not coincide spatially with the input
current. This is consistent with our view that the ISR effect
requires both the multistable dynamical structure described
above and small noise.

We find it important to emphasize that the quantitative
aspects of the ISR phenomenon depend strongly on the details
of how it is measured. This was noted in earlier publications,
but the consequences and the connection to the dynamical
structure was not made explicit. In particular, the choice of
initial conditions and observation times are crucial, as we have
examined and explained here.

In some ISR investigations [15,16], trajectories were
obtained for analysis by using a single fixed initial condition.
Here, we showed in Fig. 5 that the choice of transient time—the
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amount of time that the system is allowed to evolve from
the initial condition before spikes are counted—dramatically
affects the shape of the ISR curve. The reason for this is simply
that in the parameter region of interest, the longer a noisy
trajectory spends in the vicinity of the spiking limit cycle,
the more likely it is to transition to the resting state, where
it is very likely to remain forever if the noise is small. This
effect is particularly relevant to the study in Ref. [32], in which
many trajectories were constructed as follows: the first evolved
from a single fixed initial condition in the basin of the spiking
limit cycle, and each subsequent trajectory began from where
the previous trajectory ended, thus obtaining essentially one
extremely long trajectory (500 s) for analysis. Then, 50 such
long trajectories were obtained. In the parameter region of
interest, these very long trajectories are likely to be trapped
at the equilibrium relatively early in their time evolution
because of the transition probability asymmetry described
above. Consequently, statistics calculated using such data are
dominated by the resting state, and relatively few spikes are
observed, yielding the ISR effect.

In other ISR investigations [15,16], sets of randomly chosen
initial conditions drawn from a specified region of the state
space were used. Here, we showed (Fig. 6) that the small-
noise limiting behavior of the ISR curve can be predicted from
knowledge of how the state space sample volume intersects
the basins of the spiking limit cycle and the equilibrium. If
one draws initial conditions from a different region of the state
space, or if the random selection is not done uniformly, the
quantitative details of the ISR curve will change. We note in

particular that in order to observe the ISR effect, at least some
initial conditions must be drawn from the basin of the spiking
limit cycle in order to yield nonzero spike counts in the limit of
zero noise. Without these, the ISR effect does not occur. This
is illustrated by the I = 5.5 μA/cm2 curve shown in Fig. 6,
since for this value of the input current, the limit cycle does
not exist.

Finally, we note that the multistable structure that is
required for the ISR phenomenon is not particularly unusual,
and therefore the effect should be observable in a wide range
of applications both inside and outside of neuroscience. For
the Hodgkin-Huxley model studied here, the current interval
in which multistability is present is quite small [compare
Figs. 3(a) and 3(b)]. However, we suspect that similarly
structured multistable regions occur more robustly in more
biophysically realistic neurons that take into account, for
example, a more complete complement of ion channels [37],
neural modulators [38,39], and/or local environmental factors
such as dynamic ion concentrations [40–42].
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