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From Generalized Synchrony to Topological Decoherence:
Emergent Sets in Coupled Chaotic Systems
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We consider the evolution of the unstable periodic orbit structure of coupled chaotic systems. This
involves the creation of a complicated set outside of the synchronization manifold (the emergent set).
We quantitatively identify a critical transition point in its development (the decoherence transition). For
asymmetric systems we also describe a migration of unstable periodic orbits that is of central importance
in understanding these systems. Our framework provides an experimentally measurable transition, even
in situations where previously described bifurcation structures are inapplicable.
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The idea that several subsystems, when interacting
nonlinearly, collectively give rise to novel dynamics that
are not obviously attributable to the individual component
parts has been termed emergence [1]. In this Letter we
investigate such novel dynamics in systems of coupled
chaotic maps, with an emphasis on systems of dissimilar
components. When synchronized, the time evolution
occurs on a restricted set embedded in the full state space.
As the degree of coupling is decreased to zero, the system
gradually evolves into a completely unsynchronized state
in which all the degrees of freedom of the individual
component maps are realized. At each extreme, the
dynamics can be understood in terms of the components.
In between, however, the situation is more complicated.

Various transitions in this desynchronization process
have been described in the literature [2–11]. Much of this
earlier work depends on an invariant manifold that persists
under decreased coupling due to system symmetries. Our
approach is novel in that it does not refer to invariant mani-
folds or symmetries. Instead, we analyze the evolution of
the periodic orbit structure as the coupling is decreased
and synchronization breaks down. Our formalism is there-
fore applicable to a much larger class of coupled systems,
in particular, those consisting of dissimilar components.
We report two main results. We describe the creation and
evolution of a complicated set that develops outside of
the synchronization manifold (the emergent set), and we
quantitatively identify a critical transition point in its de-
velopment (the decoherence transition). For asymmetric
systems we also describe a migration of unstable peri-
odic orbits that is of central importance in understanding
these systems. Our framework is advantageous because it
provides an experimentally measurable transition in situ-
ations where previously described bifurcation structures
are inapplicable.

Previous work has focused on the invariant dynamics
in the synchronization manifold M , which can easily
be identified in coupled systems with symmetry (such as
when two identical subsystems are coupled together). On
M , the components evolve identically, and are said to
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exhibit identical synchrony [2]. As the coupling decreases
from a fully synchronized state, a bubbling bifurcation [3]
occurs when an orbit within M (usually of low period
[12]) loses transverse stability. In the presence of noise or
small asymmetries, a typical trajectory quickly approaches
and spends a long time in the vicinity of M , but makes
occasional excursions. (A related phenomenon is riddling
[4].) As the coupling is further decreased, the blowout
bifurcation [5] is observed when M itself becomes trans-
versely unstable (on average). More recent work has
described bifurcations that lead to the creation of peri-
odic orbits off the synchronization manifold [6]; these may
lead to the creation of chaotic attractors external to M
[7]. Also, imperfect phase synchrony has been analyzed
recently in terms of unstable periodic orbits [8], and syn-
chrony transitions have been investigated in coupled lat-
tices of identical maps [9].

The concept of (differentiable) generalized synchrony
(GS) [10,11] extends these ideas. GS relaxes the condi-
tion that the state variables evolve identically, and requires
only that they be functionally related. As the coupling
is reduced and GS breaks down, however, this function
may become extremely complicated, and the identifica-
tion of bubbling-type or blowout-type bifurcations is es-
pecially problematic. Thus, a more general description of
the desynchronization process is needed.

In the present work, we extend the above description by
considering the evolution of the unstable periodic orbits
(UPOs) as the coupling is varied. We use the following
two-dimensional, unidirectionally coupled system [13]:

Ω
x ! f�x� ,
y ! cf�x� 1 �1 2 c�g� y� , (1)

where f and g are chaotic maps and c is a scalar that de-
scribes the coupling. We emphasize that f and g need not
be similar, and may be of any dimension. For example, we
have also studied a four-dimensional system in which f
and g are Hénon maps with different parameters. For ease
of presentation, we restrict discussion to one-dimensional
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f and g. Systems such as Eq. (1) are known in the
mathematical literature as skew products or extensions;
ours is constructed such that for c � 1 the x and y dy-
namics are identical and synchronized, whereas for c � 0
the x and y dynamics are completely independent. We in-
vestigate this system as c is decreased from 1 to 0.

The simplest case is when f � g, for which the syn-
chronization manifold M (i.e., the line x � y) is invariant
and attracting at c � 1. The bubbling bifurcation occurs
when an orbit in M loses transverse stability, typically
via a period-doubling (pitchfork) bifurcation. This leads to
the creation of new orbits outside of M . As the coupling
is further reduced, more and more periodic orbits embed-
ded in M lose their transverse stability in a similar fash-
ion [14], leading to the creation of additional orbits. As
this process proceeds, the external UPOs simultaneously
undergo period-doubling cascades to chaos, thus creating
even more new orbits. We call the set of new orbits created
in this fashion the emergent set.

In the more general case f fi g, x � y is by construc-
tion invariant and attracting for c � 1. Upon decreas-
ing c, x � y is no longer invariant, and we observe that
the UPOs migrate and spread out as shown in Fig. 1 for
coupled quadratic maps. As the coupling is decreased, we
first observe transverse Cantor-like structure, followed by a
“fattening” of the striations as the Lyapunov dimension of
the attractor increases to 2.0 [15]. We have also observed
similar UPO migration in the invertible case of coupled
Hénon maps. It is remarkable that this UPO migration
appears to occur well before any orbit loses its trans-
verse stability. In fact, we observe a large range of c

FIG. 1. Magnifications of the attractor for Eq. (1) with f�x� �
1.7 2 x2, g� y� � 1.5 2 y2, and c � 0.45 (inset, c � 0.9). Su-
perimposed on both views are periodic orbits �1� of periods 1
to 20. At c � 1, these orbits lie on the diagonal x � y, but
as c is decreased they migrate, as shown here. The Lyapunov
dimension is 2.0 (inset, 1.25), and the orbits in both cases are
transversely stable and one to one in the sense described in
the text.
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over which, despite the apparent structure (ultimately two
dimensional), the periodic orbits migrate but are still trans-
versely stable and one to one in the following sense: if the
driver dynamics is fixed onto any one of its intrinsic period
p orbits, then the limiting y dynamics is an attracting orbit
of the same period.

Let U be the set of unstable periodic orbits on the line
x � y when c � 1. The number of orbits in U is deter-
mined by the driver and remains constant for all c because
of the unidirectional coupling. For f � g they remain
fixed in place, but for f fi g they migrate as described
above. As c is decreased from 1, the orbits’ stability prop-
erties evolve, but they remain transversely attracting until
a bubbling-type bifurcation is encountered. (We extend
the concept of bubbling to the asymmetric case f fi g by
defining it as the point where the first orbit in U loses sta-
bility [16].) As the coupling is further decreased, more
and more orbits bifurcate and create orbits outside of U,
and the above mechanism for the creation of the emer-
gent set applies. Because of their migration, however,
the orbits of U become intermingled with those of the
emergent set.

We wish to view system (1) as an infinite collection of
subsystems defined as follows. First, enumerate the pe-
riodic orbits of f (the driver), assigning each an index
i � 1, 2, . . . . Then subsystem Si is given by Eq. (1), but
with the driver dynamics f locked on orbit i. The bifur-
cations described above correspond to bifurcations in the
y components of these subsystems. Indeed, each subsys-
tem Si exhibits a complete bifurcation structure in y as c
is varied from 1 to 0.

To quantify the discussion, let Nxy�p� denote the num-
ber of period p orbits of system (1). Also, let Nf�p� denote
the number of period p solutions of fp�x� 2 x � 0 alone;
Ng�p� is defined analogously. These quantities contain
contributions from all periodic orbits of period q, where q
is an integer factor of p. For c � 1, the system exhibits
identical synchrony and Nxy�p� � Nf�p�. In contrast,
when c � 0, the system is fully decoupled into indepen-
dent systems, and Nxy�p� � Nf�p�Ng�p�. [Note that
Nxy�p� may achieve its maximum at c � 0 or at inter-
mediate values of c, depending on the nature of g.]

Our goal is to elucidate how this change in the unstable
periodic orbit structure proceeds as c is varied. To this
end, we consider the topological entropy h [17]; for large
p, the number of periodic orbits of period p in a chaotic
set increases exponentially with p as N�p� � ehp . Thus,
the topological entropy of the coupled system is hxy �
limp!` lnNxy�p��p, and similarly the topological entropy
of the driver is hf � limp!` lnNf �p��p.

Let Ne�p� be the number of periodic orbits of period
p that are not in U. These orbits reside in the emergent
set and are created by the bifurcations described above.
Thus Ne�p� �

Pnb
i�1 Ni�p�, where the summation is over

the number nb of subsystems that have bifurcated. Ni�p�
is the number of periodic orbits of period p not in U
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that are associated with a particular subsystem Si in the
summation. The topological entropy of the emergent set is
therefore he � limp!`Ne�p��p [18].

We define the state of topological coherence for system
(1) as the condition hxy � hf . In this state, the topological
entropy of the system is determined by the driver. In order
for topological coherence to be destroyed, the topological
entropy of the full system hxy must exceed hf . This occurs
when the emergent set becomes sufficiently complex. In
the present case, hxy � limp!`

1
p ln�Nf�p� 1 Ne�p�� �

max�hf , he�. There is therefore a critical value cd of
coupling where he first exceeds hf and topological coher-
ence is lost. We call this the decoherence transition. For
the special case f � g, we find that this typically occurs
between the bubbling cbu and the blowout cbo bifurcations.

We now address the question of how the decoherence
transition may be measured from experimental data.
First, we observe that in the symmetric noise-free case
( f � g) trajectories collapse onto M and remain there
until the blowout bifurcation. Thus, estimates of the
decoherence transition based on measured data will not
reflect the contribution of the emergent set. However,
this case is exceptional. In the more general asymmetric
case ( f fi g), the orbits of U migrate and become
intermingled with those of the emergent set. Because
of this, typical trajectories do not necessarily remain
near U; instead, the observed attractor incorporates parts
of the emergent set. How much of the emergent set is
incorporated depends on the degree of asymmetry and
the coupling. By using trajectory data, an effective deco-
herence transition can be measured which indicates how
much the emergent set actually influences the observed
dynamics. It is precisely this effective transition that is
most relevant to the observed dynamics of the system
and, hence, is most relevant to experimental situations.
Below we describe an efficient method for estimating
the effective decoherence transition from actual trajectory
information.

We use the methods of Ref. [17]. These authors
define an average n-step stretching rate as follows. Let
l

�n�
i denote the square root of the largest eigenvalue of

�Jn�xi��T Jn�xi� for some initial condition xi , where J
is the Jacobian of the system in Eq. (1). Then form
the following average quantity over m initial conditions
chosen with respect to the natural measure: ln�1d�n,m �

ln�
Pm

i�1 l
�n�
i �m��n. For hyperbolic systems with one

stretching direction, it can be shown [17] that h1 �
limn!` limm!` ln�1d�n,m is the topological entropy of
the system [19]. Numerically, h1 can be obtained by
measuring the scaling of ln�

Pm
i�1 l

�n�
i � with n, for a

sufficiently large m.
Since Eq. (1) can exhibit two expanding directions

for certain parameter values, we also measure the
two-dimensional average stretching rate: ln�2d�n,m �

ln�
Pm

i�1�l1l2��n�
i �m��n, where �l1l2��n�

i represents the
square root of the product of the two largest eigen-
values of �Jn�xi��T Jn�xi�. The topological entropy
when there are two expanding directions is given by
h2 � limn!` limm!` ln�2d�n,m.

These quantities enable us to calculate the topological
entropy of the full system as the coupling parameter varies
and traverses regions with one and two stretching direc-
tions: hxy � max�h1, h2�. For the examples considered
below, we have h1 � hf for the coupling range of inter-
est. Thus, the effective decoherence transition occurs when
h2 first exceeds h1 � hf . (In higher dimensional systems,
these methods are practical if the number of unstable di-
rections is low; otherwise, it may be difficult to accurately
calculate these quantities from limited data [20].)

We apply these methods to a system of coupled
quadratic maps. We take f�x� � 1.7 2 x2, g� y� �
ag 2 y2, and consider the cases ag � 2.0, 1.7, and 1.5.
[We have also used two Hénon maps coupled as in Eq. (1),
and the results are qualitatively the same.] Figure 2 shows
max�h1, h2� for these cases. In all cases, h1 is equal to
the topological entropy of the driver dynamics hf (for
ag � 2.0, h1 . hf only for c , 0.1, not shown). The
effective decoherence transition occurs when h2 exceeds
h1, as indicated by arrows.

Finally, we illustrate the influence of the emergent set
for af � ag � 1.7 with noise. As c is decreased from
bubbling, the dynamics will make occasional excursions
from M . We expect progressively longer transient times
outside of M due to the increasing complexity of the
emergent set. Figure 3 shows the average duration of a
burst versus coupling. There is a transition range of c
(depending on noise) above which bursts are not observed.
For small noise, this transition is close to the blowout;
for larger noise, it shifts to higher coupling. Note that,
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FIG. 2. Topological entropy estimate max�h1, h2� for the sys-
tem in Eq. (1) with f�x� � 1.7 2 x2, g� y� � ag 2 y2, and
cases ag � 2.0, 1.7, and 1.5. h1 in all cases equals hf , the topo-
logical entropy of the driver, for the range of coupling shown.
The effective decoherence transition occurs when h2 first ex-
ceeds h1 (arrows). (For the symmetric case ag � af � 1.7,
bubbling occurs at cbu � 0.442 and blowout at cbo � 0.352.)
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FIG. 3. The duration of bursts away from the synchronization
manifold for Eq. (1) with f�x� � 1.7 2 x2 and g� y� � 1.7 2
y2. The threshold value of c for observing such bursts increases
with larger noise. The curves asymptote to a common curve for
coupling less than this threshold, indicating that the trajectory
during the bursts is strongly influenced by the emergent set.

for c values below their respective transitions, the various
curves asymptote to a common curve, suggesting that the
dynamics during the bursts is consistently influenced by
the emergent set. As expected, the average duration of
bursts increases with decreasing c.

Finally, we note that the mechanism for the creation of
emergent sets outlined here leads one naturally to expect
unstable dimension variability [21] as a typical feature of
emergent sets, and of coupled systems in general.

In conclusion, we emphasize that the emergent set
framework developed here is quite general and applies to
coupled systems of nonidentical elements where previ-
ously studied bifurcation structures may be inappropriate.
Furthermore, the effective decoherence transition can be
estimated in such systems from experimental data.
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