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Controlling chaos by using more than one available control parameter is presented as an exper-
imentally feasible way to reduce the transient times that precede stabilization and improve perfor-
mance in the presence of noise. We demonstrate these advantages by applying our method to a

numerical example.

PACS number(s): 05.45.+b

Recently, a great deal of attention has been focused
on the idea that small adjustments to an available sys-
tem parameter can be used to stabilize unstable periodic
orbits in chaotic systems [1,2]. Numerous experiments
in many diverse fields have demonstrated the feasibility
of this approach. For example, this technique has been
applied to mechanical systems [3], lasers [4], circuits [5],
chemical reactions [6], biological systems [7], etc. Fur-
thermore, it is possible to switch from one periodic orbit
to another at will [2,3,8]. In all the references cited above,
control is achieved by judiciously adjusting only a single
available control parameter, even though, in principle,
several such parameters are available for use.

The method of Refs. [1,2] assumes that the control per-
turbations are limited to be small, and hence is based on
a linearization of the dynamics in the immediate vicin-
ity of the orbit that is to be stabilized. Thus, one must
wait for the chaotic trajectory to approach this small re-
gion before applying the stabilization procedure. In the
case of even moderately high-dimensional systems, these
chaotic transient times can be prohibitively long. Several
targeting methods have been proposed to deal with this
problem [8,9]; however, these methods require extensive
knowledge of the dynamics, which often is not available
in an experimental situation.

In this paper, we extend the method of Refs. [1,2] to
allow for the simultaneous use of several control parame-
ters. Warncke et al. have considered this problem in the
context of controlling very high-dimensional chaotic sys-
tems [10]; here we adopt the well-known pole placement
formalism and demonstrate that multiparameter control
constitutes an experimentally feasible way to significantly
reduce the chaotic transient times. Furthermore, we show
that the resulting stabilization is more effective and re-
silient in the presence of noise.

To illustrate our results, we compare one and two pa-
rameter control as applied to the kicked double rotor
(see Fig. 1). This is a system of two connected rods
subjected to periodic impulsive kicks. The time evolu-
tion, sampled immediately after each kick, is given by
a four-dimensional map [2,11]. We take our control pa-
rameters to be the strength of the kick p and the an-
gle ¢ at which the kick is applied. Small perturbations
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|0p] < ps and/or |6¢| < ¢, are applied around nominal

values (pp = 9.0,¢0 = 0.0) at which the map exhibits
36 fixed points within a chaotic attractor of Lyapunov
dimension 2.8 (see figure caption for further details).
For simplicity, we consider the stabilization of a fixed
point xf, that is, an unstable periodic orbit of period
one. A chaotic trajectory beginning at a random initial
condition on the attractor can be stabilized at x; after
a transient time £, where ¢ has a distribution of the form

FIG. 1. The kicked double rotor. A massless rod of length
l; pivots about the stationary point P;. A second mass-
less rod of length 2[; is mounted on pivot P,, which in turn
is mounted at the end of the first rod. Periodic impulsive
kicks f(t) = Y >0 pnd(t — n) are applied at an angle ¢
as shown. The state of the system immediately after the
(n + 1)th kick is given by a four-dimensional map of the
form X,,+1 = MYn + X,, and Yn+1 = LYn + G(xn+1),
where X = (8;,02)7 are the two angular position coordinates,
Y = (64,6:)T are the corresponding angular velocities, and
G(X) is a nonlinear function. M and L are both constant
matrices, which involve the coefficients of friction at the two
pivots and the moments of inertia of the rotor. Gravity is
absent. Control parameters at time n are p, = 9.0 4 dpn
and ¢, = 0.0 + 8. We take l; = 1/4/2, and set all other
parameters to 1. For further details, see Refs. [2,11].
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exp(—t/{t)) for large t. Here () depends on the size of the
region around Xz in which the control procedure can be
successfully applied, and hence depends on (i) the max-
imum permitted parameter perturbations p, and/or ¢.,
and (ii) the extent to which the linearization used to cal-
culate the perturbations accurately reflects the dynamics
in this region [1].

In order to meaningfully compare the transient times
for one versus two parameter control, we proceed as fol-
lows. First, we select a value of p, and use one parameter
p control to measure the resulting (t). We then find a
value for ¢, such that one parameter ¢ control yields the
same value for (t). This time can then be compared to
the time resulting from controlling using both parame-
ters, subject to the restrictions |0p] < px and |6¢] < @..

We use two different fixed points, one with one unsta-
ble direction, and the other with two unstable directions.
The results are presented in Fig. 2. For purposes of vi-
sual comparison, we plot () for one and two parameter
control versus ¢,. The multiparameter case is seen to
show a reduction of up to an order of magnitude in the
transient time. We emphasize that this improvement has
been obtained only by assuming that an additional con-
trol parameter is available for use. This is often the case
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FIG. 2. The transient times (t) vs ¢* for one parameter (+)
and two parameter (¢) control for (2) a fixed point with two
unstable directions, and (b) a fixed point with one unstable
direction. The one parameter results are obtained by applying
small perturbations to ¢ subject to the restriction |§¢| < ¢*.
The two parameter results are similarly obtained under the
restrictions |0$| < ¢* and |p] < p*, where ¢* and p* are
chosen as described in the text. The two parameter results
show an improvement of up to an order of magnitude in the
transient times. = o '
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in experimental situations.

We next consider the effect of noise on stabilized or-
bits. If the noise amplitude is large enough, control can
be temporarily lost, and the orbit returns to the attrac-
tor at large. To model this effect, we stabilize a fixed
point, then add random perturbations of increasing am-
plitude to each component of the state at each iterate.
(More specifically, we use random numbers drawn from a
uniform distribution on the interval [— A4, 4], where 4 is
the noise amplitude.) We measure how much noise a sta-
bilized fixed point can tolerate by making 1000 attempts
to hold an orbit for 1000 iterations at each noise level.
Figure 3 shows a plot of the average number of iterations
for which the fixed point remained stabilized versus noise
amplitude. The two cases of one parameter control were
seen to fail at significantly lower noise amplitudes than
the multiparameter control case.

If the noise is small, a controlled orbit occupies a small
cloud in the vicinity of the fixed point. A typical distri-
bution of distances from the fixed point is shown in Fig.
4. We find that multiparameter control is more effective
in the sense that it leads to a distribution that is narrower
and peaked at a smaller distance than in the two cases
of one parameter control. This was observed at all noise
amplitudes at which the fixed point in question could be

“stabilized. .

" “We now describe the stabilization formalism for mul-

tiparameter control. Suppose we have a system whose

~"dynamics is governed by a d-dimensional map X,;; =

F(xn,pn), where p, is a vector of r available control
parameters. We would like to stabilize a fixed point
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FIG. 3. The average number (N) of iterations (maximum
1000) for which a fixed point remains stabilized vs noise am-
plitude, for the same fixed points as in Fig. 2. Two parameter
control is seen to tolerate larger noise amplitudes.
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FIG. 4. The distribution of distances of a controlled orbit
from the fixed point about which it is stabilized, in the pres-
ence of noise, for a typical (p*,$*) pair (see text). Here the
noise amplitude is 0.001; similar distributions were observed
at all amplitudes at which the fixed point could be stabilized.
The multiparameter distribution is narrower and peaked at a
smaller distance than the one parameter cases.

x* (which exists for the parameter values po) by mak-
ing small perturbations dp(),...,dp(") to the r param-
eters subject to the restrictions |6p(1)| < oM, 16p@] <

i),. ..,|6p(")| < pir). Without loss of generality, let
us replace (X, — X*) by Xp, and (P, — Po) by pn. We
approximate the dynamics in the vicinity of x = 0 by

Xnt1 = Ax, + Bp,, (1)
where A = 4E|,—0 is a (d x d) matrix and B = %|p=0
is a (d x ) matrix. Then writing p, = —Kx,, where
K is a (r x d) matrix, we have X,4+1 = (A — BK)x,.
For a controllable system, standard techniques (i.e., pole
placement) allow us to find the matrix K such that (A —
BK) has any desired eigenvalues. (The controllability
condition and the construction of K are described in the
Appendix; see also Ref. [12].) By selecting eigenvalues of
magnitude less than one, x,, approaches 0.

If x is large, the above linearization cannot be expected>

to be valid. Hence, we calculate the control perturba-
tions at every iteration, and if the prescribed values are
not within the allowed ranges, we proceed at the un-
perturbed parameter values. When using several con-
trol parameters, the calculated perturbations may be in
range for only a few of the components of p. In our nu-
merical example, we only apply the perturbations if all
calculated values are within the allowed ranges. See be-
low for a discussion of other possibilities. This process is
repeated until 100 consecutive iterations yield perturba-
tions within the allowed ranges; we take this to be our
definition of achieving control.

A matrix T can be constructed (see the Appendix) that
transforms Eq. (1) to the controllable canonical form
Kny1 = Az, + Bp, where x, = T&,, A = T AT,
B = T-!B, and K = KT. For computational conve-
nience, we have chosen K in our numerical example such
that (A — BK) has zero eigenvalues. Thus, (A BK)
will also have zero eigenvalues, and in particular, will
be a block nilpotent matrix with zeros along the diago-

3555

« - nal. This contruction therefore collapses the state vector

onto the fixed point in a2 minimum number of steps npin
equal to the dimension of the largest nilpotent block in
(A — BK). For example, in a four-dimensional system
with one control parameter, K can be constructed such

that

(A -BK) =

oo o
oo o+
oo
o - OO

This will lead a succession of state vectors

31 x2 T3 T4 0
P Ty T3 Tq 0 0
=l [ 7 la |7 lo ] lo] 7o
T4 0 0 0 0

and n,in = 4. In the two parameter case, (A - ﬁf{) will
consist of two such nilpotent blocks along the diagonal,
with zeros elsewhere, and K can be constructed such that
each nilpotent block is 2 x 2. Thus, the above process
takes place in each block, and n,,, = 2 steps.

This convergence proceeds, however, at the expense
of shuffling the coordinates of the state during the first
(min — 1) steps in the manner illustrated above, during
which it is possible to move the trajectory outside of the
region in which the linearization is valid. In this case the
procedure fails. Thus, since two parameter control only
requires one shuffling step while one parameter control
requires three, the multiparameter case is more likely to
successfully achieve control. For a typical {p*, ¢*) pair in
our numerical example, one parameter p control required
an average of 197 attempts before successfully stabilizing
the trajectory at the fixed point, while one parameter
¢ control required an average of 440 control attempts.
These numbers may be contrasted with an average of

“only seven control attempts required in the case of two

parameter control.

As mentioned above, when using several control pa-
rameters, the calculated perturbations may be within the
allowed ranges for only a few of the components of p,,. In
this case, it is possible to apply only those perturbations
and leave the other components unchanged. In the exam-
ple above, this corresponds to setting either the upper or
lower half of (A — BK) to zero and nilpotent blocks. In
our numerical experiments, no advantages were observed
under this procedure. From a set of 10000 trajectories
begun at random initial conditions, 29.9% were stabi-
lized as described above, but at the cost of increasing the
overall average number of control attempts to 249.

Ideally, one would like to choose (A —BK) such that no
detrimental shuffling of coordinates occurs. Since chaotic
transient trajectories approach the fixed point along the
stable directions, at the time control is initiated, x will
have small components in the unstable directions, but a
large component in at least one stable direction. To avoid
shuffling this large component into the other coordinates,
one would like to move the trajectory directly onto the
stable manifold, as originally proposed in Ref, [1], This,

however, can be problematic in the multiparameter case.
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Even though (A — BK) can be constructed to have any
desired eigenvalues, it may not be possible to simultane-
ously align its stable eigenvectors with those of A. In
this case, it may be best to use all zero eigenvalues.

In conclusion, we emphasize that the stabilization for-
malism presented here requires no global knowledge of
the dynamics of the system, and thus represents an ex-
perimentally feasible way to reduce transient times and
improve performance in the presence of noise.

This work was supported by the U.S. Department of
Energy, Office of Scientific Computing. In addition, E.B.
was supported by the National Physical Science Consor-
tium under the sponsorship of Argonne National Labora-
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[12].

A controllable system is one for which a matrix K can
be found such that A — BK has any desired eigenvalues.
This is possible if rank C = n, where n is the number of
dimensions of the state vector, and

C=[B:AB:A2B: :A""lB]
is the controllability matrix.

If only one control parameter is to be used, K is most
easily obtained from Ackermann’s formula

tory. The numerical computations reported in this paper K= [ 00---1 ] C14(A),

were supported in part by a grant from the W. M. Keck. where

Foundation. The authors would like to thank E. Ott and

J. A. Yorke for numerous helpful discussions. B(A) = (A — mI)(A — pol) - (A — p,),

APPENDIX

In this appendix we describe how to construct the ma-

trix K. For further details, the reader is referred to Ref.
J

in which the u;’s are the desired eigenvalues.

In the multiparameter case, recall that the matrix B
is (n xr). Denoting the columns of B by B;,B;,...,B
the controllability matrix can be written as

C={B1 :Bz:...:B.: AB; : AB; : ... : AB, : ... : A™IB, : ... : A"_IB,.].

If the system is controllable, we can pick n linearly independent vectors from among the columns of C. We test the

columns as encountered from left to right, and then arrange the n columns found as follows to form the (n x n) matrix
M:

= [B1 : AB; : A’B; : ... : Am-1B, : B, : A’B, : : A"”"IB,.].

This defines the numbers n;,ns,...,n,; notice that Zn; = n.

Calculating the inverse of this matrix, we define the nf* row vector of M~! as m;, where 7; = ny +ny + --- + n;

for i =1,2,...,r. Further defining the (n; X n) matrix
m;
m;A
Si = . y
m;A.”"‘l
we then let
s, 17
S2
T=| .
S,

This matrix is (n X n), and as mentioned above, transforms the system to the controllable canonical form [12].
Thus, A is transformed to A = T~1AT, which defines the numbers ay; as follows:

( O 1 o .. 0 0 0 oo 0 0 0 0 \
0 1 ... 0 0 0 v 0 0 0 0
0 0 o - 0 0 ’ 0 cee 0 0 - 0 --- 0
.\ —Q11 —Q1z —033 cct —Olpy —Q(ng+1) —Oi(n,+2) " —Q(n, +ng) "ttt ottt ottt —Qlp
A= 0 0 0 ... 0 0 1 0 0O --- 0 --- 0
TQ21 —Qgz —Q23 *c —Q2n; —Og(ny+1) —Q2(ni+ng) "ttt ottt cecr —Qapn
TQni —Qn2 —Qp3 ‘- —Onpn; —Qn(ng+1) “Qn(ni4ng) " 7ttt —Opg )
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T-'B:

")
0 0 0 0 O
1 ,312 ﬁlr
00 0 0 O

Similarly, B is transformed to B=
( 0 0 0

[we )
1l

o)

in which the the first block has n; rows, the second block
has n3 rows, etc. This defines the numbers G;;.

If the desired elgenva.lues of (A — BK) are all zeros, K
is given by K = HAT ™!, where
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1 Bz s -+ B\

0 1 f23 - Baor

0 «vv vvn o 1

[note that H is an (r x 7) matrix|, and
—a1 —0g2

ver —Qlin

—Q; —Q22 °°° —Q2n

A=

A is (r x n).

If instead of zeros the desired eigenvalues are
[1y+++ 3 Pn, then the matrix A is determined by equat-
ing the coefficients of the characteristic equation of (A -
BHA — AI) to those of the desired characteristic equa-
tion, namely, (3 —A)(p2 — A) - - - (#a — A). The resulting
equations are often fewer in number than nr, the number
of entries in A, and thus A may not be unique.
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