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Abstract

The “control of chaos” refers to a procedure in which a saddle fixed point in a
chaotic attractor is stabilized by means of small time dependent perturbations.
Control may be switched between different saddle periodic orbits, but it is
necessary to wait for the trajectory to enter a small neighborhood of the saddle
point before the control algorithm can be applied.

This paper describes an extension of the control idea, called “targeting.” By
targeting, we mean a process in which a typical initial condition can be steered
to a prespecified point on a chaotic attractor using a sequence of small, time
dependent changes to a convenient parameter. We show, using a 4-dimensional
mapping describing a kicked double rotor, that points on a chaotic attractor with
two positive Lyapunov exponents can be steered between typical saddle periodic
points extremely rapidly—in as little 12 iterations on the average. Without
targeting, typical trajectories require 10,000 or more iterations to reach a small
neighborhood of saddle periodic points of interest.

1 Introduction

A chaotic process has sensitive dependence on initial conditions that prevents long-
term predictions of the state of the system. Chaotic dynamical processes typically
exhibit highly irregular behavior and can be represented mathematically by so-called
“strange attractors” whose geometry is very complex. Despite the complexities of
chaotic behavior, the sensitive dependence on initial conditions can be exploited to
maintain the system about some desired final state (like a saddle periodic orbit em-
bedded in the attractor) by a carefully chosen sequence of small perturbations to a
control parameter. This is the basic idea behind the so-called “control of chaos,”
wherein small perturbations can be used to formulate a feedback stabilization of one
of the infinite number of unstable periodic orbits that naturally occur in a chaotic
attractor. (See Ref. [1] and the paper by Prof. Ott elsewhere in this volume.) The
method relies in part on suitable linear approximations of the stable and unstable
manifolds associated with the saddle periodic orbit.

One of the first laboratory experiments to demonstrate the feasibility of this
feedback stabilization consisted of a driven, flexible beam whose dynamical behavior
was well approximated by a two dimensional map [2]. Although the uncontrolled
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Figure 1: The double rotor.

process was chaotic, the control algorithm maintained the beam about a saddle fixed
point that was embedded in the attractor, and only small perturbations were needed
to maintain the control. The applicability of the method has since been demonstrated
in a variety of laboratory experiments.

A natural extension of this idea is the notion of targeting. The problem can be
stated simply as follows: Given a typical initial condition on the attractor, determine a
sequence of perturbations that directs the resulting trajectory to a small region about
some prespecified point on the chaotic attractor as rapidly as possible. Because of
the inherent exponential sensitivity of chaotic time evolutions to perturbations, one
expects that a suitable alteration of the trajectory can be accomplished using only
small controlling adjustments of one or more available system parameters.

An initial demonstration of targeting was given by Shinbrot et al. [3], who con-
sidered some numerical experiments using a two dimensional map. In addition, a
targeting procedure was successfully used in a laboratory experiment for which the
dynamics were approximately describable by a one dimensional map [4]. In this pa-
per, we describe an alternative approach of the targeting problem that is applicable
to systems of higher dimensionality than previously considered.

One potential application of the targeting algorithm is to steer otherwise chaotic
trajectories to a neighborhood of a prespecified saddle periodic point. As we will
show, the targeting algorithm is particularly effective for systems of moderately high
dimension.

We focus attention on the double rotor map [5], which describes the effect of
a sequence of impulse kicks on two thin, massless rods connected as illustrated in
Fig. 1. This idealized mechanical system exhibits complex dynamical behavior, and
its attractor is a subset of RZ x S2. For the values of the parameters considered
here, the Lyapunov dimension [7] of the attractor is approximately 2.8, and it has
two positive Lyapunov exponents.

Romeiras et al. [6] have demonstrated a control algorithm that can stabilize
some of the saddle periodic points embedded within the double rotor attractor. They
showed that control can be achieved by using only one control parameter. However, it
often is necessary to wait several thousand iterations before a given trajectory falls in
a sufficiently small neighborhood of the desired saddle fixed point so that the required
linearizations of the dynamical system are valid.

Figure 2 shows the results of a typical numerical experiment. The plot shows
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Figure 2: Waiting times for the control of chaos algorithm.

the position #; in radians of one of the rotors as a function of time n. Before the
control is applied (for example, during the first 2000 or so iterations of the map), the
rotors move chaotically, and the position z; assumes values throughout the interval
(0, 27). Eventually, one of the iterates lands sufficiently close to a prespecified period-
1 saddle point A that the control algorithm can be applied. As long as the control is
on, the iterates remain in a small neighborhood of A (for instance, for n approximately
between 2000 and 3000). To switch to a different period-1 saddle fixed point B, the
control is turned off, allowing the orbit to move away from A and resume its chaotic
motion. Eventually, the orbit enters a suitably small neighborhood of B, the control
is turned on, the point remains near B until the control is turned off, etc.

This example illustrates an application wherein one wants to switch between
different periodic saddle orbits. A difficulty arises in that the waiting times can be
quite long. (Although they are not shown in the figure, waiting times of 150,000
or more iterates are not uncommon in this numerical experiment.) In general, one
expects that the average waiting time before a typical orbit approaches a given saddle
periodic point is proportional to the dimension of the attractor. In this case, the
dimension is approximately 2.8, so the average distance between nearest neighbors
in a subset of N points on the attractor scales as N~1/28 [8]. In other words, if the
orbit must fall within 102 of the saddle point for the control algorithm to work, then
the waiting time is on the order of 10%-° iterations. The observed waiting times in
the numerical experiment are consistent with this rough estimate.

The targeting problem has a natural application here, because it can reduce the
waiting time by orders of magnitude. In this example, the objective is to choose
target points that lie in small neighborhoods of the saddle periodic points of interest.
In order to switch between periodic points, one applies the targeting algorithm to
steer the trajectory to a small neighborhood of one of the periodic points, then turns
on the control algorithm to maintain the orbit near the point for as long as desired.
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After the control is turned off, the targeting algorithm can be applied to steer the
trajectory to a neighborhood of another prespecified periodic point, and so on.

The targeting problem also is applicable when noise in the system causes occa-
sional loss of control, even when the orbit initially is near the desired fixed point. In
such cases, one wants to return to the periodic point as quickly as possible.

2 The double rotor map

In this section, we outline the basic ideas behind the targeting procedure. We begin
first with a brief outline of the double rotor map. A derivation can be found in [5]; a
slightly different version of the map (that is used here) is described in [6].

The first rod, of length £,, pivots about P, (which is fixed), and the second rod,
of length 2¢,, pivots about P, (which moves). The angles 6;(t), 62(¢) measure the
position of the two rods at time {. A point mass m, is attached at P2, and point
masses mz/2 are attached to each end of the second rod (at P3 and P,). Friction
at Py (with coefficient 1) slows the first rod at a rate proportional to its angular
velocity 6, (t); friction at P slows the second rod (and simultaneously accelerates the
first rod) at a rate proportional to 82(t) — 81(t). The end of the second rod marked
P3 receives impulse kicks at times ¢t = T, 2T, . .., always from the same direction and
with strength p. Gravity and air resistance are absent.

The double rotor map is the four dimensional map zn41 = F(z,), defined by

( On 41 ) ( (MO, +©,) mod 2x ) M
Tn41 = s = . .
eﬂ+l Len + G(en+1)

Here ©,, and 9,. are 2-vectors,

0(") . 0'(")
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that give the angular positions and velocities of the rods after the nth kick. That is,
(™) = 6;(nT) and 6 = §;(nT™*). The angles 6; and 8, are taken to lie in [0, 2x)..

Also,
G©) = ( ¢y sinfy )
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and L and M are constant 2 x 2 matrices. For simplicity, we assume (m; + mg)f3 =
maf2 = I. Then
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Figure 3: A path of points, consisting of z1p and its preimages x5, xg,ldots, zg.
The uncontrolled trajectory starting from yo rapidly moves away from the target
trajectory. The targeting procedure determines perturbations that move the point
y2 to a new point g, on the stable manifold S; of z;. The trajectory starting from
9o rapidly approaches the target trajectory, as represented by the point §ig. The
surfaces labeled S; and Syp are representations of the stable manifolds associated
with the points z; and z10, respectively.

paper, we fix the values of the parameters

v=T=I=m=my=0bL=1, £1=—\;—§

and use the force p as the control parameter, taking as the nominal value p = p = 9.

We write z, = F™(zo) to mean the n times iterated point zo, i.e., the point
obtained by iterating the map n times starting from zy. The double rotor map is
invertible, so F~™(zo) refers to the nth iterate of £ under the inverse map. The
notation F'(z) means that the map is applied with the kick set to its nominal value
(here 5 = 9); the notation F(z, p) means the map applied to z with the kick set to p.
We let DF(z,p) denote the corresponding Jacobian matrix of partial derivatives of
F with respect to 8; and 6;.

3 The targeting procedure

Let T be typical point on the attractor and suppose that T is the target point. A
path is a set of points consisting of T and a sequence of its preimages. The basic idea
is illustrated in Fig. 3. The target point is labeled as z,y to emphasize the idea that
this path shows the target and ten of its preimages.

Suppose that, as the map is iterated, we find a point yp that falls near 5. We wish
to find a sequence of perturbations to some available parameter such that the orbit
starting at o approaches the orbit starting at zo. (As the dynamics are chaotic,
the orbits diverge rapidly without targeting.) We now outline the basic targeting
algorithm in the case where one parameter (p in the case of the double rotor map) is
available for control.

If the problem were linear, then in principle we could compute four successive
perturbations épg, 8p1, 8p2 and 8p3 that allow us to hit the point z4 starting from yo,
because in general the gradient vectors 3F/8pq,. .., OF/dps are linearly independent.

In practice, the problem is highly nonlinear, and it is not possible to find a suffi-
ciently accurate linearization so that Newton’s method can be applied to determine
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the perturbations needed to hit z4 unless yo is extremely close to zy. Instead, we
adopt an alternative approach. (For the moment, let us ignore the presence of noise
and the effects of numerical roundoff errors.)

For the parameter values given above, numerical results show that the attractor
has two positive and two negative Lyapunov exponents. (A numerical estimate of the
Lyapunov exponents of the double rotor attractor can be obtained using the algorithm
of Benettin et al. [9]) As a result, associated with a typical point on the attractor is 2
2-dimensional unstable manifold and a 2-dimensional stable manifold. For example,
the stable manifold associated with the point z3 in Fig. 3 is labeled S3. If s € S5,
then the orbit starting from s approaches the orbit starting from z; as the map is
iterated. In general, the rate of approach is rapid because the negative Lyapunov
exponents associated with the attractor are fairly large in absolute value. The goal
of the targeting algorithm is to try to determine perturbations to the parameters
to move the orbit starting from y onto the stable manifold associated with one of
the z’s. If it is successful, then the dynamics draw the orbits closer together.

In the case where one parameter can be varied, we attempt to find two perturba-
tions §pg and 8p; so that the orbit starting from yp is moved onto Sz, the stable mani-
fold of 3. (Recall that S; is a 2-dimensional sheet. The vectors 3F(F(zo, po), 71)/p0
and F(F(zo, pa), p1)/0p1 typically are linearly independent. Since we are working
in R*, the 2-plane spanned by the gradient vectors intersects Sz in a unique point,
denoted by g2 in Fig. 3.)

A basic difficulty arises in approximating S,. In general, §j» is far from z, and a
linear approximation of S; is inadequate. In practice, a better approximation of S;
can be found by calculating the inverse images of suitable points further down the
path. For instance, a reasonable linear approximation of the stable manifold S, valid
in a small neighborhood of z1g, can be determined by finding the stable eigenspace
associated with the matrix DF(zq, p)DF(z3,p)---DF(210,p). Let so and s, denote
vectors that span this stable eigenspace at z19. Let z be the point z = z,9 + 950 +
o151, where |o;| is small. Although z may not lie exactly on Sig, the inverse images
F~Y(z), F~*(z), ... rapidly approach the corresponding sets Sy, S, ..., because
Sio is an expanding set under the inverse map, and components perpendicular to Sio
contract.

Thus, in the case of one parameter targeting, a successful solution to the steering
problem consists of determining two parameter perturbations §py and ép;, together
with values for oy and o1, such that

F~8z10 + 0050 + 0151) = F(F(%0, po), p1) = #a- (2

Equation (2) can be solved numerically using Newton’s method. There is no a priori
guarantee that Newton’s method will converge; however, when it does, we have de-
termined two successive perturbations to the control parameter that steer the orbit
of yo onto the stable manifold of z;. Thereafter, in the absence of noise and nu-
merical roundoff, the dynamics bring the two orbits closer together, typically at an
exponential rate determined by the negative Lyapunov exponents.

There is nothing special about the choice of z1p and the use of eight inverse
iterations to estimate Sz. For example, if the target point is zg, then we can es
timate Sz by the fourth inverse iterate of a point close to zg. If the target point
is farther away, say at z12, then we can look at the inverse images of a point near
Z1p or z1; instead. Going further down the path in this manner typically yields a
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poimnt whose inverse image is a better approximation to the stable manifold S;. How-
ever, the numerical solution of Eq. (2) is more ill-conditioned. For example, if we
look at the inverse images of Sg, then it is necessary to evaluate the matrix product
DF Y (z8)DF (z7)---DF(z3). If we look at Sio instead, then we must evalu-
ate the matrix product DF~(z10) DF ~!(zo)--- DF~(z3). These matrix products
become more singular as more terms are added. Thus there is a tradeoff between
numerical precision and approximation errors arising from the dynamics. For the
parameters of the double rotor map used in this investigation, we have found that six
inverse iterations is a good compromise. References [10] and [11] discuss some of the
numerical issues in more detail.

If two parameters are available for control, then only one perturbation step is
necessary. This is because typically there is a 2-plane through y;, spanned by gp =
8F (yo,p,q)/0p and g, = 0F (yo, p, g)/0q, that intersects the stable manifold S; of z;.
The procedure outlined above can be easily extended to other maps in different phase
space dimensions and with different numbers of positive Lyapunov exponents. For
example, if the attractor sits in a 6-dimensional space and has three positive Lyapunov
exponents, then the procedure requires three successive changes to a single parameter
to hit the 3-dimensional stable manifold of the appropriate point in the path. If three
parameters can be varied independently, then one tries to hit the stable manifold
of 1, and so on. .

Because of small errors in the initial approximation of Sg and numerical roundoff
errors, the control described above must be repeated periodically in order to keep
the new trajectory close to the path leading to the target. 'We recalculate the per-
turbations at each iteration along the path where possible in order to allow for the
presence of noise and/or roundoff error. (Recalculation of the control is not possi-
ble, for example, at the point just before the end of a path when only one control
parameter is being used.)

4 'Trees

The procedure described in the previous section works well, but the map must be
iterated a large number of times before reaching a neighborhood of one of the points
in the path leading to the target. A long path increases the likelihood that a given
iterate lies near a point on the path, but the time required to reach the target also
increases. Our objective is to steer a typical iterate to the target point in as few steps

as possible.
One refinement is to build a hierarchy or “tree” of paths leading to the target.
Let a target point z7 be given, together with a “root” path zg,21,...,27_; leading

to it. (In the work described in Refs. [10] and [11], each path typically has about
20 points.) The map is iterated (say from an arbitrary initial condition in the basin
of attraction) until a point z, is found that lies in a suitably small neighborhood
of one of the points in the target path. The path leading to z, (that is, z, and 20
preimages) is stored in the tree; this path leads to the root path, and forms part of
the first level of the tree. A path leading to a neighborhood of one of the preimages
of z, would be in the second level of the tree, and so on. Figure 4 gives a schematic
illustration of the procedure.

By storing the paths in a tree, we increase the probability that a given iterate on
the attractor lies near a path that can be steered to the target point. For example, if
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Figure 4: Schematic illustration of the hierarchy of paths leading to the target point.

an iterate lies on the path leading to z,, the targeting algorithm can be applied with
zn as the target point. Once a small neighborhood of 2, is reached, the targeting
algorithm is reapplied to steer the trajectory to a small neighborhood of the point zr,
which is the ultimate target.

A basic advantage of the tree structure is that the maximum amount of time
needed to reach zp grows linearly with the number of levels in the tree, but the
number of points that can be stored grows exponentially with the number of levels.
It is possible to construct “leafy” trees that reach into many regions of the attractor.
With a suitable tree, one does not need to wait very long before some iterate lies
near a path in the tree. Similarly, if the targeting algorithm fails at some point (for
instance, if Newton’s method fails to find a solution of Eq. (2)), then we lose control
of the trajectory. However, it is not long before the uncontrolled trajectory again
falls near some other point in the tree, whereupon we can attempt the targeting
algorithm once again. Reference [11] describes some of the procedures that can be
used to construct an “optimal” tree.

In the results described below, we use trees that typically consist of 10,000 points
stored in paths to a depth of three levels. (Thus, if each path has length 20, then
no more than 60 steps are required to reach the target point.) A separate tree is
constructed for each target point of interest.

Once the tree is built, it is possible to steer points to the target very quickly, as
follows. Let zg be a point on the attractor. If zg is not close to any of the points
in the path tree, then we create a new set of points A by making n small random
perturbations to the kick. Here A = {zl') : zg') = F(20,p0 + m),1 < i < n} where
7; is a random variable in a small interval around 0. Typically we take 7; from a
uniform distribution in the interval [-0.05,0.05].

We now check whether any of the points in A lies near any of the points in the
tree. If so, then the targeting procedure is attempted. If it is successful, then we have
steered the point zp to the target in no more than 61 steps (the first step consists of
the random kick, followed by no more than 60 steps of the control procedure). Each
of the points in A can be iterated (using the nominal value of the kick) until one of
them can be steered successfully to the target.

Trees can be useful in other contexts. Suppose for instance that we want to avoid
certain regions of the attractor. (Perhaps some regions of the phase space correspond
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Figure 5: Control of stable periodic points with targeting.

to an undesirable operating regime of the system.) It may be possible to construct
trees whose paths lie outside such a region, thus keeping the controlled system within
an acceptable operating regime.

Similarly, it is possible in principle to associate a cost function with each of the
paths in the tree. In cases where there are two or more sets of paths that lead to the
target, one can select the set with the least total cost.

5 Results

Figure 5 shows the results of using the targeting algorithm together with control of
saddle periodic points. We have selected four saddle fixed points on the attractor. We
then pick four different target points, each of which is in a small neighborhood of the
fixed points. A tree of paths leading to each target point is constructed as described
above. The uncontrolled process quickly leads to a point that lies near some point in
the tree. We apply the targeting algorithm to steer the trajectory to a neighborhood
of the saddle fixed point. A control algorithm (see [11]) is then used to stabilize the
trajectory near the fixed point. After the control is turned off, the trajectory quickly
wanders away from the fixed point, but it approaches another point on the path tree,
so the trajectory can be targeted to a neighborhood of the next saddle fixed point.
In this way, we can rapidly switch between different saddle fixed points. In contrast
to the case described in Fig. 2, where wait times of several thousand iterates are
common between controlled states, targeting allows us to reduce the waiting time to
as little as 12-16 iterates. Thus, the targeting algorithm can reduce the waiting time
by two orders of magnitude.

Of course, there can be significant computational costs associated with building
the path trees. In the results described here, 1~-10 million iterates are required to
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build the trees leading to the saddle fixed points. The nature of the application
will dictate in practice whether the time savings from repeated use of the targeting
procedures outweighs the effort needed to build the trees.

Even so, the necessary computations to build the trees are easily done on a
modern workstation (less than five minutes of CPU time on a DEC Alpha or Silicon
Graphics Indy). Memory requirements are also modest, generally 4-5 megabytes for
the trees. Obviously, the computational and memory requirements depend heavily on
the nature of the dynamical system, the dimension of the attractor, and the dimension
of the phase space.

The effect of noise on the targeting algorithms remains under study. In the
case of the double rotor map, the Lyapunov exponents are large, and small errors
in targeting are quickly amplified by the dynamics. Thus the targeting algorithm is
somewhat sensitive to noise. However, noise levels on the order of 1 percent or less
do not appear to present serious difficulties. Preliminary results suggest that the use
of two or more control parameters is more robust in the presence of noise than just

_ one control parameter. See Ref. [11] for more details.

6 Conclusions

We conclude with some brief remarks on the relationship of this work to the other
papers presented at the conference. One of the basic themes of the conference is the
sensitive dependence on initial conditions of many nonlinear processes. While such
dependence makes long-term predictions of such systems difficult or impossible in the
presence of noise or measurement uncertainties, it can be made to work in one’s favor.
Someday, chaos may be seen as a desirable design feature because the behavior of the
system can be switched from one state to another with only small perturbations.

Professor Judd has suggested that chaotic dynamics may allow some systems to
be operated in a “pseudo-periodic” fashion, wherein trajectories within an attractor
are directed from one small region of the attractor to another using only small pertur-
bations. (The trajectories do not necessarily constitute a periodic orbit.) The path
trees as described in this article can be adapted for this purpose. All one needs is a
collection of targets that forms a pseudo-periodic orbit, and the targeting algorithm
can be applied to each target in the sequence.
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Commentary by K. Glass

This paper looks at the control problem of targeting points in a chaotic system. The
introduction of the paper outlines the targeting problem and stresses the value of using
targeting when stabilizing periodic points. Stabilization algorithms are discussed in
the paper in this volume by E. Ott et al.

The third section of the paper outlines in detail the procedure used to target a
point in a chaotic system. This procedure involves finding the stable manifold of some
point on the trajectory leading to the target point and then attempting to direct the
system onto this manifold. A tree is then built up of sections of trajectories leading
to these manifolds. Although creating the tree of paths will require some off-line
computation, the resulting algorithm will be highly efficient. Not only will the target
point be reached after only a few steps, the perturbation required to target the system
may be calculated quickly making the method effective for on-line control. :

The concept of storing sections of trajectories in a tree of paths would be highly
useful in the later sections of the paper: ”Creating and Targeting Periodic Orbits”.
I feel also that it may be possible to use the idea of creating trajectories discussed
here to extend the tree of paths used in the above algorithm. By creating trajectories
using small perturbations, we might be able to construct paths in less accessible areas
of the system.

Commentary by I. Mareels
The contribution by Kostelich and Barreto discusses in the context of a double rotor

example a method to achieve fast transitions between orbits on a strange attractor
by the aid of small amplitude control.

Targeting and Control of Chaos

Under the generic condition that
attractor the minimal transition time
beat control action (to use control eng
is proposed. (The minimum time op
optimal control problem.)

The authors propose a numerica
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is oncstructed off line.
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Under the generic condition that the map is controllable at each point on the
attractor the minimal transition time control problem is well posed. A repeated dead
beat control action {to use control engineering lingo) with amplitude bounded control
is proposed. (The minimum time optimal control problem is considered a difficult
optimal control problem.)

The authors propose a numerical method to generate the appropriate control
actions. Essentially a tree structure of paths which covers adequately the attractor
is oncstructed off line.

Questions to authors

1. could you do a small calculation as in the intro to why 10,000 points in the
tree would roughly give you a transition time of 20 (I think it is illuminating) Using
the fractal dimension it seems to come out quite nicely.

2. Why are most paths without control, and only the root path econtains control
action? CPU time savings? Could you comment on this?




