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Limits to the experimental detection of nonlinear synchrony
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Chaos synchronization is often characterized by the existence of a continuous function between the states of
the components. However, in coupled systems without inherent symmetries, the synchronization set can be
extremely complicated. We describe and illustrate three typical complications that can arise, and we discuss
how existing methods for detecting synchronization will be hampered by the presence of these features.
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Since the surprising discovery that chaotic systems caing intrinsic symmetries can exhibit synchronization sets
synchronize[1,2], many different kinds of nonlinear syn- with very complicated structures. In particular, for coupled
chrony have been considered in the literat{8¢ In this invertible systems, the synchronization set can become non-
paper, we focus on the concept of generalized synchronizalifferentiable by “wrinkling,” developing cusps, and in the
tion (GS) [2,4,5 of couplednonidenticalsystems. GS is a Mmore severe case of noninvertible systems, it can become
useful concept in the analysis of physical and biological sys-smeared.” If “smearing” occurs, the functior is in gen-
tems comprised of multiple components. Emergent feature8ral replaced by anultivaluedrelation, even though the re-
within such systems are characterized by coherent behavi®POnse is still asymptotically stable. These features may se-
among their components; for example, the perception of ser.€"€ly hamper the detection of nonlinear synchrony. The aim
sory input may correspond to synchronized activity betweerﬁ)f this quk Is to (_:omprehenswely address the intrinits
layers of the cortek6]. The experimental detection and clas- to detecting nonlinear sypch_rony. . .
sification of such synchronized states is challenging, and re- We propose a categorization of the_structures which arise
cently attempts have been made to broaden the concept o .SUCh Is;;nchronlza]flor:] states, and ,Imk thesg strucrt]L.JIres to
GS with special emphasis on applications in biol¢@)8]. universal features of the components Qynqm|cs. While we

: ) ) . expect the situation to be similar in bidirectionally coupled

Geometrically, GS is characterized by the existence of

) %ystems, we consider a drive-response system as our model
continuous mapp:X—Y between the phase spacésy of ] simplify the analysis:
two systems. This map associates a state of the first system

with a state of the second in such a way that gragh is

invariant and attracting under the evolution of the coupled Xn+1=f(Xn),
system[9]. In the presence of symmetries, graph) (fre-
qguently has a simple structure.

In drive-response systems GS is equivalenaggmptotic
stability [5] if the driving system isnvertibleand has a com-
pact attractor. A system is asymptotically stable if, for anyThe drivexe X and the responsge Y are state vectors and
two initial conditions &o.Y4).(Xo,Ys) € XXY which share bothf andg are smooth or piecewise smooth maps. The

the same initial drive state, lim _||yn(yg.Xo) ~Yn(Yg.Xo)|| ~ Parameterc characterizes the interaction strength. For sys-

0, wherey, (-, ) represents iteration of the response s S_tems described by ordinary differential equations, a Poincare
' Yl P P YS'section can be used to reduce the system to a discrete map.

giweuggﬁg::;?awlrgﬁﬂgi% ,iﬁéss %fi%r;sr?su?&’_ {ahicsoirsnmon The first type of nontrivial structure has been studied in
o ; e P , resp ’ . [15,16], and we include it for completeness. Followifip]
similar to the idea of “reliable response” in the generation of h lowi hoi h o
neuronal signal§11,12. we use t.e following choices for the maps d): x
The detection of GS in practice relies strongly on the_(u’v)’ y is a scalar, and

continuity of ¢ [4,7,13, and in general also requires a cer-

tain degree of smoothness ¢f Tight clusters of points X NUp, v<a

need to be mapped to similarly clustered point¥ imderd. ne1T 4 (1-M)u V=

The existence of GS has been demonstrated in both physical noon

[14] and biological system&] using this concept. However,

variations and mismatches are typical for coupled systems in rvn/a, v<a
Un+1=

Yn+1=09(Xn,YnC)- 1

@

nature and, as we show in this paper, coupled systems lack- (wi—a)l(l-a), ve=a
n 1 n=

*Electronic address: http://complex.gmu.edu Yn+1=CY,+COS 22Uy, 1,
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FIG. 1. (a) Generalized Baker's map. Gray scale indicates the

contraction rate in Eq(3). (b) “Thin” Baker’s map. FIG. 2. Complicated structures in synchronization séts:

smooth case witHhy|<|h,|(h,=In0.3); (b) wrinkled case with

with 0<A<1 and O<a<1. The drive is the generalized "L?'dfr:gxgzrr‘imfg’i“ ?}:‘I‘Sf /C hhd(L;el('}{/:;”g'g)b 'g4b(‘zt)hgsag
Baker’s map taking the unit square to two nonoverlapp|ngf:aée witﬁ)\ 0 2“ '0'3 ande=0.2 % do 90 i.n tHis cace pThe
. . . - =0.2, a=0.3, =0.2.ng=—0. .
rectangle:s as §hown I.n Fig(. Thg responsgis a f||ter of cusps occur at the forward iterates of the critical pointiatl/2,
the drive’s variableu with ¢ controlling the contraction rate. - -
If 1 th . icall ble f m and the largest thre@ndicated by markejpsare located ati=0.1,
|.C|< , T e. response IS asymptotlpa y Sta e. Or)a. S 0.0488, and 0.28(d) Smeared case witb=0.35.
pointed out in[15,16), the synchronization set is typically
nondifferentiable if the average contraction within the drive enx. When|hy|<|Inc},  is smooth almost everywhere and
is larger than the contraction in the response. In particular, ii .dependsdlinearly’ ors as shown in Fig Cg)WWhen
) . e max . ®.
hq is the'least negative past h|st9ry Lyapunov expofiei} [hg|>|Inc|, emax decreases sublinearly with[Fig. 3(b)] and
of the drive andh, is the contracting past-history Lyapunov & is only Holder continuous
exponent in the transverse dlrecF|Cthh||| hl | <Ihql). theng This e 0 test is the iaea behind most GS detection
IS generally nondlfferentla_lble with a r exponeni[,l8] methods. Of course, finite data and experimental noise may
given by|h, /hy| <1 [15]. Since the generalized Baker’s map .
; ; N adversely affect the procedure, but we emphasize that the
has uniform measure in, the synchronization set can be

visualized in theuv plane. Graphs demonstrating both the PrESENce of wrinkling, which is an intrinsic feature of the
. . y plane. P ng both 1 dynamics, may significantly hinder the detection of general-
differentiable and nondifferentiable case are given in Figs

: . Ized synchrony. As a result, it may not be possible to reliably
ﬁffiaf)e?enn(iiggi)l'it;e?v?/(raiﬁ%ﬁlgyn”we call this development of non- predict the response from the drive even if the drive can be

The wrinkling of the sy./nchronization manifold islacal measured with high accuracy. -
feature, and the smoothness in the vicinity of a single orbi The sgcond type of structure tha.t can Qeve!op Wlthl.n the
! . . tSynchromzatlon set results from critical points in the drive’s

depends on the ratio of the exponehtsand hy along this

orbit. Thus there typically exist invariant sets embedded in  ,_
the synchronization set on which has differing degrees of 12
regularity[19]. As we will demonstrate below, there are situ-
ations in which nondifferentiability on these “smaller” sets
may become important.
In an experimental situation, the loss of smoothnesg of ®] # - smooth (Data)

2]b)

------- Wrinkled (Data)

can mask the underlying coherence in the coupled system 377 7" e Smoci (Theoretical) -6} S mocth (Theoretical)
Consider the following numerical test based on the definitons _ 40 & & + 2  , 40 & -+ -4 2
of continuity. After transients die out, pick a point,{) on = 079 o] @

the attractor and a small numb&rand iterate the full system 27 | I——
until the x component of the trajectory lands in the ball 7] 2]

B[ x,5] a large number of times. Keep track of these points, 7
and denote by, the largest distance between their corre- 87 = - Cusped (Data)
spondingy components. i is differentiable, then typically 0]~ ———Smooth (Theoretical) ] ¢ ====Smooth (Theorefical
€max—0 linearly as5—0. This is not the case wheljin| 0 8 6 4 2 0 8 8 4 2

o : In3
>|h,|=|Incl|; instead, €,—0 sublinearly asé decreases,
and the slope of the functiogy,{d, X) corresponds roughly FIG. 3. Result of thee,,— 8 test: (a) smooth,(b) wrinkled, (c)
to the Hdder exponent of¢p at x. An ensemble of these cusped, andd) smeared. The thick solid line is the expected linear
scaling curves can be studied for a collection of random choscaling if ¢ is differentiable. Parameters are the same as in Fig. 2.

€49 S o Smeared (Data)
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attractor. At a critical point, the Jacobian matrixfois sin-  forward iterates due to contraction. Thus they do not affect
gular, so that within a neighborhood of these points we carhe ema—d test as severely. The difference between the two
expect the existence of orbits ¥along which the contrac- cases can be described more quantitatively using wavelet
tion is large compared to the magnitudehgf. As a result ~analysis[19].

graph (@) will typically not be differentiable near the critical ~ Figure 3c) shows an ensemble of scaling curves for the
points. Although the local mechanism resulting in the non-€max— 9 test in the cusped casey,, depends linearly 0@ at
differentiability of ¢ is similar to wrinkling, the structure of most pointsx up to the resolution of the data, as expected.
the synchronization set and the resulting limits on synchronyoccasionally a scaling curve has a slope less than one indi-
detection are different. We demonstrate this difference usingating the lack of regularity of for a value ofu near one of

the following modification of the drive in Eq2): the “cusps.”
The third type of structure which may hinder the detection
AN[(u,—1/2°%+1/8], v,<a of GS is the development of striations in the synchronization
n+1= A (1-MU,, ve=a, set when the drive isoninvertible Although many systems

can be modeled by ordinary differential equations and are
vl v<a thus assumed to have time-invertible dynamics, there are im-
vn+1:[ ntT n 3) portant physical and biological examples in which noninvert-
(vp—a)(1l-a), v,=a, ibility plays an important role. Traditional descriptions of
population dynamics in biology utilize noninvertible maps
where the responsgis as in EQ.(2). In this example, the [21]. Models with time delays, for which temporal invertibil-
drive maps the unit square onto two nonoverlapping rectity is not guaranteef22], are typical in neuronal processes.
angles[see Fig. 1a)] as before. However, the contraction Most importantly, the dynamics reconstructed from discrete-
rate in theu direction is no longer uniform. The linear map time samples of systems with strong dissipation is frequently
(Uns1=A\uy) is replaced by a cubic mapuf,,=4A[(u,  best approximated by noninvertible md2s].
—1/2)3+ 1/8]), which is invertible and has a critical pointat  Due to noninvertibility, a typical state of the drive will
u=1/2. The dependence of the contraction rateuds indi-  have a whole tree of possible histories, and recurrences in the
cated by the gray scale in Fig@. Along the lineu=1/2 the  drive may thus occur along different routes. Each such route
contraction rate is infinite. As in the previous example, theprovides a different driving signal, and this occurs indepen-
synchronization set can be visualized as a graph inuthe dently of the coupling strengtb. Therefore, even if the re-
plane(see Fig. 2c)). The parameters are chosen so that forsponse is asymptotically stable, for almost all points in the
almost every orbit the past-history Lyapunov exportenin  drive there typically correspond a Cantor set of points in the
the drive is less than the normal contraction rhfe=Inc. response: one for each drive histdryee Fig. 2d)] [8] thus
Since|h, /hyg|>1 for almost every orbit, the synchronization resulting in a striated structure for the synchronization set. A
set is smooth almost everywhere. However, grgpts not  different and less severe form of multivalued synchroniza-
completely smooth since “cusps” are formed at and near theion where the drive and response are related by amratio
critical point and its iterates. The biggest cusp appeats at is reported in24,25.

=\/2, which is the forward image afi=1/2. The Hdder The striated structure of this synchronization set is best
exponent ati=\/2 is zero regardless &f. , and the shape of understood in a two-dimensional piecewise linear version of
graph (@) atu=A\/2 is consistent with this prediction. system(1)

This graph also contains an infinite number of smaller
cusps. Since the cubic map in E§) maps the critical line 2X,, X,<0.5
u=\/2 to two lines atu;=A%2(\2-3\+3) and u, Xni1=F(X,)= (4)

=\/2(3—\) [marked by triangles in Fig.()], two more 2(%y=0.9, x,=0.5,

cusps appear at these locations, and further cusps appear un-
der subsequent iterates of the critical lir29]. Vns1=0(X1,¥Yn:C)=CYn+Xn41,
Although graph ) is not smooth in either the cusped or

the wrinkled case, its global structure in the two cases i§yheref is noninvertible with two preimages for eagh, ;.
different. The wrinkles in the first example depend on thegqr |c|<1, the synchronization set is asymptotically stable.
strength of the contraction rate in tlyedirection, and fot  rigyre 2d) is a typical picture of the synchronization set and
<min (\,1—X), graph () is differentiable everywhere. On gnsists of a Cantor set of lines. Although the topology of the
the other hand, the critical line in the cusped case is an ingynchronization set for a more general noninvertible drive-
trinsic feature of the drive, and the Her exponent au  response system will be different, the structure illustrated by
=\/2 and its forward iterates will vanish for all values of the thig example is a typical feature.

contraction ratér, =In c. In this case graphd) is nondiffer- The structure of this synchronization set can be under-
entiable forall values ofc. Second, the nondifferentiability gtgoq using a linear transformation of the ful,y) system

in the wrinkled case typically has a stronger effect on the,y 5 matrixT(c), (Xy)T=T(xy)T, where

detectibility of GS. Since wrinkling occurs almost every-

where whenh, /hy| <1, the e, 6 test fails at almost ev-

ery point in the drive. In the cusped case, the cusps occur at T(c)=
and near the critical linei=1/2, and decrease in size at its

1 0

—2(1-c)lc (2—c)(1—c)lc)’ ®
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In the new coordinates, systei) becomes the “thin” Bak-  of the drive will be severely limited, and the situation cannot

er's map given by be improved by increasing the precision of the measure-
~ _ ments. The striated structure and the resulting limits on GS
~ |2 x,<0.5 detection are consequences of the noninvertibility of the
=1 - _ .
" 2(%,—-0.5), X,=0.5, drive.

In summary, for coupled systems without symmetries, the

Vo X, <0.5 synchronization set can develop very complicated structure.
S}nﬂzl cme e (6) We have described and illustrated three generic features
Cynt+(1-c), Xx,=0.5. which can arise in the synchronization set from the inherent

. . . dynamics; these are likely to coexist in more general systems
Under one iteration, the two halves of th_e unit square ar?ZG,Zﬂ. The presence of these structures implies that the
mapped .|nto twq rectangles as _befcﬁsge Fig. 1b)].' Forc dynamical coherence of the coupled system will be difficult
<05, th's map s area contracting with a rate given 0y 2 45 detect from experimental data, even if the system is as-
Aftgr n lterations, the ergmal unit square Is mapped fb 2 ymptotically stable. Current detection methods relying on
horlzonta_l strips of height”, _and the limiting set of this continuity may very well fail and the presumed mutual pre-
process is a Cantor set of lines. The attracting set of th@jqapility between synchronized components might become
original map(4) [see Fig. 2d)] is theJTage of this Cantor 5 tically useless. Experimental noise might also hamper
set of lines under the transformatian “(c). , the detection of nonlinear synchrony, but the dynamical limi-
Figure 3d) demonstrates the effect of these striated struc4tions detailed here are intrinsic to a given system and they

tures on theemax—étest.' Since the synchronization set is acannot be improved by a more careful experiment or by
graph of a one-te- relation, €y,,,>0 for all values ofx and  sise reduction techniques.

S. Once e,y reaches the thickness of the striated set, it no

longer decreases as a function®fThis can be seen in the This work was supported by the NSF-IBN 9727739 and
saturated scaling curves in Figid3 Consequently, the abil- NIH 2RO1MH50006(P.S. and S.$. 7TKOZMH01493(S.S,

ity to predict the state of the response system from the statend 1K25MH01963E.B.).
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