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Limits to the experimental detection of nonlinear synchrony
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Chaos synchronization is often characterized by the existence of a continuous function between the states of
the components. However, in coupled systems without inherent symmetries, the synchronization set can be
extremely complicated. We describe and illustrate three typical complications that can arise, and we discuss
how existing methods for detecting synchronization will be hampered by the presence of these features.
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Since the surprising discovery that chaotic systems
synchronize@1,2#, many different kinds of nonlinear syn
chrony have been considered in the literature@3#. In this
paper, we focus on the concept of generalized synchron
tion ~GS! @2,4,5# of couplednonidenticalsystems. GS is a
useful concept in the analysis of physical and biological s
tems comprised of multiple components. Emergent featu
within such systems are characterized by coherent beha
among their components; for example, the perception of s
sory input may correspond to synchronized activity betwe
layers of the cortex@6#. The experimental detection and cla
sification of such synchronized states is challenging, and
cently attempts have been made to broaden the conce
GS with special emphasis on applications in biology@7,8#.

Geometrically, GS is characterized by the existence o
continuous mapf:X→Y between the phase spacesX,Y of
two systems. This map associates a state of the first sy
with a state of the second in such a way that graph (f) is
invariant and attracting under the evolution of the coup
system@9#. In the presence of symmetries, graph (f) fre-
quently has a simple structure.

In drive-response systems GS is equivalent toasymptotic
stability @5# if the driving system isinvertibleand has a com-
pact attractor. A system is asymptotically stable if, for a
two initial conditions (x0 ,y08),(x0 ,y09)PX3Y which share
the same initial drive state, lim

n→`
uuyn(y08 ,x0)2yn(y09 ,x0)uu

50, whereyn(•,•) represents iteration of the response s
tem under the full dynamics. As a consequence, a comm
drive can enslave multiple copies of the response@10#; this is
similar to the idea of ‘‘reliable response’’ in the generation
neuronal signals@11,12#.

The detection of GS in practice relies strongly on t
continuityof f @4,7,13#, and in general also requires a ce
tain degree of smoothness off. Tight clusters of points inX
need to be mapped to similarly clustered points inY underf.
The existence of GS has been demonstrated in both phy
@14# and biological systems@7# using this concept. However
variations and mismatches are typical for coupled system
nature and, as we show in this paper, coupled systems l
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ing intrinsic symmetries can exhibit synchronization s
with very complicated structures. In particular, for coupl
invertible systems, the synchronization set can become n
differentiable by ‘‘wrinkling,’’ developing cusps, and in th
more severe case of noninvertible systems, it can bec
‘‘smeared.’’ If ‘‘smearing’’ occurs, the functionf is in gen-
eral replaced by amultivaluedrelation, even though the re
sponse is still asymptotically stable. These features may
verely hamper the detection of nonlinear synchrony. The a
of this work is to comprehensively address the intrinsiclimits
to detecting nonlinear synchrony.

We propose a categorization of the structures which a
in such synchronization states, and link these structure
universal features of the component’s dynamics. While
expect the situation to be similar in bidirectionally coupl
systems, we consider a drive-response system as our m
to simplify the analysis:

xn115f~xn!,

yn115g~xn ,yn ,c!. ~1!

The drivexPX and the responseyPY are state vectors an
both f and g are smooth or piecewise smooth maps. T
parameterc characterizes the interaction strength. For s
tems described by ordinary differential equations, a Poinc´
section can be used to reduce the system to a discrete m

The first type of nontrivial structure has been studied
@15,16#, and we include it for completeness. Following@15#
we use the following choices for the maps in~1!: x
5(u,v), y is a scalar, and

un115H lun , vn,a

l1~12l!un , vn>a,

vn115H vn /a, vn,a

~vn2a!/~12a!, vn>a
~2!

yn115cyn1cos 2pun11 ,
©2002 The American Physical Society25-1
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with 0,l,1 and 0,a,1. The drive is the generalize
Baker’s map taking the unit square to two nonoverlapp
rectangles as shown in Fig. 1~a!. The responsey is a filter of
the drive’s variableu with c controlling the contraction rate
If ucu,1, the response is asymptotically stable for allx. As
pointed out in@15,16#, the synchronization set is typicall
nondifferentiable if the average contraction within the dri
is larger than the contraction in the response. In particula
hd is the least negative past-history Lyapunov exponent@17#
of the drive andhr is the contracting past-history Lyapuno
exponent in the transverse direction~with uhr u,uhdu!, thenf
is generally nondifferentiable with a Ho¨lder exponent@18#
given byuhr /hdu,1 @15#. Since the generalized Baker’s ma
has uniform measure inv, the synchronization set can b
visualized in theuy plane. Graphs demonstrating both t
differentiable and nondifferentiable case are given in Fi
2~a! and 2~b!, respectively. We call this development of no
differentiability ‘‘wrinkling.’’

The wrinkling of the synchronization manifold is alocal
feature, and the smoothness in the vicinity of a single o
depends on the ratio of the exponentshr and hd along this
orbit. Thus there typically exist invariant sets embedded
the synchronization set on whichf has differing degrees o
regularity@19#. As we will demonstrate below, there are sit
ations in which nondifferentiability on these ‘‘smaller’’ se
may become important.

In an experimental situation, the loss of smoothness of
can mask the underlying coherence in the coupled sys
Consider the following numerical test based on the definit
of continuity. After transients die out, pick a point (x,y) on
the attractor and a small numberd, and iterate the full system
until the x component of the trajectory lands in the ba
B@x,d# a large number of times. Keep track of these poin
and denote byemax the largest distance between their cor
spondingy components. Iff is differentiable, then typically
emax→0 linearly asd→0. This is not the case whenuhdu
.uhr u5u ln cu; instead,emax→0 sublinearly asd decreases
and the slope of the functionemax(d, x) corresponds roughly
to the Hölder exponent off at x. An ensemble of these
scaling curves can be studied for a collection of random c

FIG. 1. ~a! Generalized Baker’s map. Gray scale indicates
contraction rate in Eq.~3!. ~b! ‘‘Thin’’ Baker’s map.
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senx. Whenuhdu,u ln cu, f is smooth almost everywhere an
emax depends linearly ond as shown in Fig. 3~a!. When
uhdu.u ln cu, emax decreases sublinearly withd @Fig. 3~b!# and
f is only Hölder continuous.

This emax2d test is the idea behind most GS detecti
methods. Of course, finite data and experimental noise m
adversely affect the procedure, but we emphasize that
presence of wrinkling, which is an intrinsic feature of th
dynamics, may significantly hinder the detection of gener
ized synchrony. As a result, it may not be possible to relia
predict the response from the drive even if the drive can
measured with high accuracy.

The second type of structure that can develop within
synchronization set results from critical points in the drive

e
FIG. 2. Complicated structures in synchronization sets:~a!

smooth case withuhdu,uhr u(hr5 ln 0.3); ~b! wrinkled case with
Hölder exponent given byuhr /hdu,1(hr5 ln 0.8). In both~a! and
~b!, l50.8 anda50.7. This choice giveshd520.64. ~c! Cusped
case withl50.2, a50.3, andc50.2. hd520.90 in this case. The
cusps occur at the forward iterates of the critical point atu51/2,
and the largest three~indicated by markers! are located atu50.1,
0.0488, and 0.28.~d! Smeared case withc50.35.

FIG. 3. Result of theemax2d test: ~a! smooth,~b! wrinkled, ~c!
cusped, and~d! smeared. The thick solid line is the expected line
scaling if f is differentiable. Parameters are the same as in Fig
5-2
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attractor. At a critical point, the Jacobian matrix off is sin-
gular, so that within a neighborhood of these points we
expect the existence of orbits inX along which the contrac
tion is large compared to the magnitude ofhr . As a result
graph (f) will typically not be differentiable near the critica
points. Although the local mechanism resulting in the no
differentiability of f is similar to wrinkling, the structure o
the synchronization set and the resulting limits on synchr
detection are different. We demonstrate this difference us
the following modification of the drive in Eq.~2!:

un115H 4l@~un21/2!311/8#, vn,a

l1~12l!un , vn>a,

vn115H vn /a, vn,a

~vn2a!/~12a!, vn>a,
~3!

where the responsey is as in Eq.~2!. In this example, the
drive maps the unit square onto two nonoverlapping re
angles@see Fig. 1~a!# as before. However, the contractio
rate in theu direction is no longer uniform. The linear ma
(un115lun) is replaced by a cubic map (un1154l@(un
21/2)311/8#), which is invertible and has a critical point a
u51/2. The dependence of the contraction rate onu is indi-
cated by the gray scale in Fig. 1~a!. Along the lineu51/2 the
contraction rate is infinite. As in the previous example,
synchronization set can be visualized as a graph in theuy
plane~see Fig. 2~c!!. The parameters are chosen so that
almost every orbit the past-history Lyapunov exponenthd in
the drive is less than the normal contraction ratehr5 ln c.
Sinceuhr /hdu.1 for almost every orbit, the synchronizatio
set is smooth almost everywhere. However, graphf is not
completely smooth since ‘‘cusps’’ are formed at and near
critical point and its iterates. The biggest cusp appearsu
5l/2, which is the forward image ofu51/2. The Hölder
exponent atu5l/2 is zero regardless ofhr , and the shape o
graph (f) at u5l/2 is consistent with this prediction.

This graph also contains an infinite number of sma
cusps. Since the cubic map in Eq.~3! maps the critical line
u5l/2 to two lines at u185l2/2(l223l13) and u28
5l/2(32l) @marked by triangles in Fig. 2~c!#, two more
cusps appear at these locations, and further cusps appea
der subsequent iterates of the critical line@20#.

Although graph (f) is not smooth in either the cusped
the wrinkled case, its global structure in the two cases
different. The wrinkles in the first example depend on t
strength of the contraction rate in they direction, and forc
,min (l,12l), graph (f) is differentiable everywhere. On
the other hand, the critical line in the cusped case is an
trinsic feature of the drive, and the Ho¨lder exponent atu
5l/2 and its forward iterates will vanish for all values of th
contraction ratehr5 ln c. In this case graph (f) is nondiffer-
entiable forall values ofc. Second, the nondifferentiability
in the wrinkled case typically has a stronger effect on
detectibility of GS. Since wrinkling occurs almost ever
where whenuhr /hdu,1, theemax2d test fails at almost ev-
ery point in the drive. In the cusped case, the cusps occu
and near the critical lineu51/2, and decrease in size at i
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forward iterates due to contraction. Thus they do not aff
the emax2d test as severely. The difference between the t
cases can be described more quantitatively using wav
analysis@19#.

Figure 3~c! shows an ensemble of scaling curves for t
emax2d test in the cusped case.emax depends linearly ond at
most pointsx up to the resolution of the data, as expecte
Occasionally a scaling curve has a slope less than one
cating the lack of regularity off for a value ofu near one of
the ‘‘cusps.’’

The third type of structure which may hinder the detecti
of GS is the development of striations in the synchronizat
set when the drive isnoninvertible. Although many systems
can be modeled by ordinary differential equations and
thus assumed to have time-invertible dynamics, there are
portant physical and biological examples in which noninve
ibility plays an important role. Traditional descriptions o
population dynamics in biology utilize noninvertible map
@21#. Models with time delays, for which temporal invertibi
ity is not guaranteed@22#, are typical in neuronal processe
Most importantly, the dynamics reconstructed from discre
time samples of systems with strong dissipation is freque
best approximated by noninvertible maps@23#.

Due to noninvertibility, a typical state of the drive wi
have a whole tree of possible histories, and recurrences in
drive may thus occur along different routes. Each such ro
provides a different driving signal, and this occurs indepe
dently of the coupling strengthc. Therefore, even if the re
sponse is asymptotically stable, for almost all points in
drive there typically correspond a Cantor set of points in
response: one for each drive history,@see Fig. 2~d!# @8# thus
resulting in a striated structure for the synchronization se
different and less severe form of multivalued synchroni
tion where the drive and response are related by an 1:m ratio
is reported in@24,25#.

The striated structure of this synchronization set is b
understood in a two-dimensional piecewise linear version
system~1!

xn115 f ~xn!5H 2xn , xn,0.5

2~xn20.5!, xn>0.5,
~4!

yn115g~xn ,yn ,c!5cyn1xn11 ,

wheref is noninvertible with two preimages for eachxn11.
For ucu,1, the synchronization set is asymptotically stab
Figure 2~d! is a typical picture of the synchronization set a
consists of a Cantor set of lines. Although the topology of
synchronization set for a more general noninvertible dri
response system will be different, the structure illustrated
this example is a typical feature.

The structure of this synchronization set can be und
stood using a linear transformation of the full (x,y) system
by a matrixT(c), (x̃ ỹ)T5T(x y)T, where

T~c!5S 1 0

22~12c!/c ~22c!~12c!/cD . ~5!
5-3



ar

2

th
r

uc
a

n
e
-
ta

ot
re-
GS
the

the
ure.
res

ent
ms
the
ult
as-
on
e-
me
per
i-

hey
by

nd

SO, BARRETO, JOSIC´ , SANDER, AND SCHIFF PHYSICAL REVIEW E65 046225
In the new coordinates, system~4! becomes the ‘‘thin’’ Bak-
er’s map given by

x̃n115H 2x̃n , x̃n,0.5

2~ x̃n20.5!, x̃n>0.5,

ỹn115H cỹn, x̃n,0.5

cỹn1~12c!, x̃n>0.5.
~6!

Under one iteration, the two halves of the unit square
mapped into two rectangles as before@see Fig. 1~b!#. For c
,0.5, this map is area contracting with a rate given by 2c.
After n iterations, the original unit square is mapped ton

horizontal strips of heightcn, and the limiting set of this
process is a Cantor set of lines. The attracting set of
original map~4! @see Fig. 2~d!# is the image of this Canto
set of lines under the transformationT21(c).

Figure 3~d! demonstrates the effect of these striated str
tures on theemax2d test. Since the synchronization set is
graph of a one-to-̀ relation,emax.0 for all values ofx and
d. Onceemax reaches the thickness of the striated set, it
longer decreases as a function ofd. This can be seen in th
saturated scaling curves in Fig. 3~d!. Consequently, the abil
ity to predict the state of the response system from the s
-
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of the drive will be severely limited, and the situation cann
be improved by increasing the precision of the measu
ments. The striated structure and the resulting limits on
detection are consequences of the noninvertibility of
drive.

In summary, for coupled systems without symmetries,
synchronization set can develop very complicated struct
We have described and illustrated three generic featu
which can arise in the synchronization set from the inher
dynamics; these are likely to coexist in more general syste
@26,27#. The presence of these structures implies that
dynamical coherence of the coupled system will be diffic
to detect from experimental data, even if the system is
ymptotically stable. Current detection methods relying
continuity may very well fail and the presumed mutual pr
dictability between synchronized components might beco
practically useless. Experimental noise might also ham
the detection of nonlinear synchrony, but the dynamical lim
tations detailed here are intrinsic to a given system and t
cannot be improved by a more careful experiment or
noise reduction techniques.

This work was supported by the NSF-IBN 9727739 a
NIH 2R01MH50006~P.S. and S.S.!, 7K0ZMH01493~S.S!,
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