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Box-counting dimension without boxes: ComputingD, from average expansion rates
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We propose an efficient iterative scheme for calculating the box-coufdagacity dimension of a chaotic
attractor in terms of its average expansion rates. Similar to the Kaplan-Yorke conjecture for the information
dimension, this scheme provides a connection between a geometric property of a strange set and its underlying
dynamical properties. Our conjecture is demonstrated analytically with an exactly solvable two-dimensional
hyperbolic map, and numerically with a more complicated higher-dimensional nonhyperbolic map.
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I. INTRODUCTION box-counting dimensiong=0) and the information dimen-
sion (g=1). However, forq+ 1, it does not appear thax,
Fractal dimensions are important quantities in characterean be expressed in terms of a finite number of invariants of
izing the geometric structure of strange sets. In particularthe dynamical system such as Lyapunov exponents. In fact,
they provide measures of the arbitrarily fine scale structuréhe Lyapunov partition function formalism of Refsl2,13
of invariant sets generated by chaotic processes. From suggests that, for typical attractoi3, must be determined
practical point of view, they also provide an estimate of thefrom a family of weighted average volume expansion rates
minimum number of degrees of freedom needed to describdepending on a real parameter.
the dynamical evolution of these chaotic systems. In this paper, we first propose and discuss the following
One of the simplest and most intuitive definitions of the conjecture for an upper bound for the box-counting dimen-
fractal dimension of a strange set is the box-counting dimension D, in terms of averag&-dimensional expansion rates
sion (or capacity dimensiorD, [1-5]. Given a fractal setin E,,k=1,... d (to be defined beloyof a d-dimensional
a d-dimensional Euclidean spacB,, gives the scaling be- chaotic system:
tween the number ad-dimensionale boxes needed to cover
the set completely, and the boxes’ sigzeFor a fractal set InEpy,

i e Dosm+ ——,
generated by a chaotic process, one can also define its infor- INEy—INEpyq
mation dimensiorD, [6] by weighting thee boxes by the
frequency with which a typical chaotic trajectory visits eachwhere m is the smallest integer less thahsuch that the
box. average n+ 1)-dimensional expansion raté,., is con-

Both these definitions are based on the geometric strudracting, i.e.,E,; ;<1 [14]. (This upper bound is generally
ture of the strange set, and, in the casdgf its associated lower than the rigorous upper bound reported in R&E].)
probability distribution. They both involve the construction We also introduce an iterative scheme that generates a se-
of a covering set with a grid of boxes. Direct application of quence of decreasing upper bound estimate®fpNumeri-
these geometric definitions to chaotic dynamical systems isal experiments show that convergence to within machine
difficult, since ase decreases it becomes impossible to dejprecision of the truedy usually occurs within a few itera-
termine all thee boxes visited by a given trajectory from a tions. This proposed scheme provides a more efficient
finite amount of data. This problem is especially severe fomethod for estimating the box-counting dimension of a cha-
the box-counting dimension, because it can depend heavilgtic attractor than the direct application of the definition of
on regions infrequently visited by a typical trajectory. box-counting dimension, especially in experimental situa-

The Kaplan-Yorke conjecture connects the informationtions.
dimensionD; to the Lyapunov exponents of the chaotic set The paper is organized as follows. We begin with a defi-
[7-9]: it relates a geometric quantity of a strange set to thenition of the box-counting dimension, and provide a heuristic
dynamical properties of the underlying chaotic process. Mosargument for our conjecture. In Sec. Ill, we show analyti-
importantly, since numerical algorithms for calculating cally that Eq.(1) holds for the generalized baker's mép
Lyapunov exponents are in general more efficient than disimple hyperbolic systemin Sec. IV, we describe the rela-
mension calculations based on the countingedfoxes in  tionship of our conjecture to the partition function formal-
d-dimensional space, the Kaplan-Yorke conjecture providessm. In Sec. V, we describe our iterative refining scheme and
a direct and simple method to estimate the information di-demonstrate that it converges to the true valuB gfFinally,
mension of a chaotic set. in Sec. VI, we numerically estimate the box-counting dimen-

Various attempt§9—13] have been made to formulate a sion of a nonhyperbolic systefthe Haon map using our
generalized Kaplan-Yorke-type relationship for the spectrunproposed iterative scheme, and show that our calculated re-
of generalized Renyi dimensiom, [6], which includes the sults agree well with previous results reported elsewhere

@

1063-651X/99/6(1)/3788)/$15.00 PRE 60 378 ©1999 The American Physical Society



PRE 60 BOX-COUNTING DIMENSION WITHOUT BOXES: ... 379

[13,16. We also illustrate the utility of our procedure by a) = A
calculatingDy as a function of a system parameter for a T T
four-dimensional map.

0
II. CONJECTURE FORMULATION e /

Assume that we have @dimensional dynamical system
given by ad-dimensional invertible ma-(x), and that it b)
possesses a chaotic attractor. The box-counting dimension €

<A

D, of the attractor is defined in the following way. First we e S

partition the entired-dimensional state space by a grid of
d-dimensional cubes with size We then count the number <L>

of € cubesN(e), that contain points belonging to the attrac-

tor. The set of all nonempty cubes constitutes a cover for the FIG. 1. (a) Thejth e box is stretched into a long thin parallelo-
attractor. With successively smaller valuesepthe number ~ gram under the action of the mag(xy). The stretched box will
of cubesN(e) increases. The box-counting dimensiog of ~ have an ared\~eL,(xp,n) and lengthL ~eL(xp,n). (b) Cover-
the attractor is defined as the scaling exponent betwieh ing an average stretchedbox by boxes with smaller edge length

N
2727

ande ase—0, €' =€e(E,/E,)". (A)~€E] and({L)~ €E].
~In(N(e)) systemi.e.,hj=1im,_..(1/n)In \i(x4,n) for “almost every”
Do= I'mo In(1/e) 2 xb with respect to the natural measyud, E, will typically

be different from expﬁikzlhi) [17]. The difference will in

The second ingredient needed in the formulation of oudeneral depend on the distribution of the finite time
conjecture is the concept of average expansion rates. Féyapunov exponent4]. While the Lyapunov exponents
simplicity, we assume that the chaotic attractor is hyperbolicar® Well recognized as important dynamical averages in
meaning that the number of asymptotically stable and unStudying chaotic systems, the average expansion Eateto
stable directions is invariant for the entire attractor and thaPur knowledge, have received relatively little attention
there are no neutrally stable points embedded in the attractdr}2,13,18—20 (An efficient method for calculating average
Consider a collection oM, initial conditions chosen ran- €xpansion rates can be found in Rfif9].)

domly from the attractor according to its natural measure 10 connect the geometric concept of the box-counting
For a given initial conditiond), in the set (:j=<M,), we  dimensionD, of a chaotic attractor to its average expansion

ratesE,, we consider a simple two-dimensional invertible
mapF(x) with E;>1 andE,<1. Thus,on averagea small
AN=N,= =g, (3) line segment will be stretched and a small area will be con-
tracted under the repeated application of the fafis in the
which is an ordered sequence of the square roots of the eflefinition for Dy, we first cover the entire attractor with
genvalues of the real non-negative Hermitian matrixN(e) boxes of edge lengte. We are interested in the addi-
[DF"(xh) 1'DF"(x}). HereDF"(x}) is the Jacobian matrix of - tional number of boxes needed to cover the entire set if we
then-times iterated map"(x}), and t denotes the transpose decrease the size of the boxes. To estimate this scaling, we
of a matrix. Since we assume that we have a hyperboliiterate each of the origina boxes forward in time by a large
attractor, then for large there exists an integersim=d number of iterates. By choosinge small enough, the im-
such that for allx),\1=---=\,>1 and >\ 1= ages of the boxes are well approximated by a collection of
=N\q. stretched parallelograms; an example is shown in Fig. 1

With these finite time expansion factors, we can define therhe image of the box originally located ®(j e [1N(€)])
local finite time k-dimensional volume expansion rates i have a decreased area given WLz(XB n) and a
R ' : . '
Li(x0.m) =TI{_1\i(x5.n). As a simple example, aftet re-  gpetched edge length ef_,(x5,n). We can approximate the
peated applications of the map the image of a small line  get of all such parallelograms with a new covering set con-
segment originally centered &} with an initial length ofe

will have a stretched length approximately given by
€L 1(x},n)=e\{(x},Nn). The finite time local volume expan-
sion ratesL(x},n) will in general fluctuate in time and
across the attractor. It is useful to define the following per-
iterateaverage expansion rates/er the natural measuye:

can define a spectrum dhite time expansion factofg},11]

sisting ofN(e) long thin parallelograms of aree’Ej and
edge lengtheE]. We now want to cover these parallelo-
grams with smaller boxes of edge length= e(E5/E}). This
requires an additional factor ofE}/e’=E2"/EJ more €’
boxes to cover the entire attractor; see Fign)1Thus

2n

1 MO 1/n ~ , El ~
Ex=lim (L(xh,m)*"=lim | lim > Li(xhn) | N(e )~E—2N(e)- (5)
n—o n—o\ Mg—o 0j=1
@)

Now we assume thaE\I(e) satisfies the following scaling

It is important to note that although the asymptotic growthrelation with a dimensionlike exponer,: Kj(e)fve’Da
rate of \;(x},n) gives the Lyapunov exponents of the [21]. Then the above equation gives
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En —Da E2I"I

€ Pa, 6)
E} (

Solving forD,, one obtains 1

F(x.y) y1‘x3 N

B

B 7
7 InE;—InE,’ ™

Da

A similar derivation for D, can be made for a
d-dimensional invertible map with average-dimensional g i g >
expansion rate larger than 1 and an average X
(m+1)-dimensional expansion rate less than 1. In this case,
the nth iterated image of al-dimensionale cube will be b)
approximately a stretched and squashed-(1)-dimensional A
parallelepiped. The average such parallelepiped will have an y
(m+1)-dimensional volume- e 1E" ., , while its largest 1
m-dimensional face will have a volume €™E},. Then, by
considering the covering of this stretched and squashed par:
allelepiped with cubes of smaller edge lengtd’
=e€(Ep,.,/Ep), one obtains

InE,,

Dy=m+ ——
a INE,,—INE ;1

®)

by following the same steps as in Eq5)—(7). In this gen-
eral case, the additional number of smakercubes needed 0 7% Ay, Ry (1—7§)1 X
will approximately scale as™E} /e’ ™.

The heuristic argument above suggests tbatshould FIG. 2. Images of a ur_lit square under t_he aption of the general-
approximate D, well in cases where the finite time ized baker's map(a) One iteration.(b) Two iterations.
Lyapunov exponents are nearly uniform across the attractor. ] ] ) ] )
Further analysis and numerical evidence, to be discussed b&fter one iteration, a unit square will be mapped into two
low, suggests that, in general, @) gives an upper bound vertical strips with widths\, and\,, as shown in Fig. @).

onD.. ie By repeating the process once more, there will be four strips
0y 1S 3 . 2 2 . .
with widths A%, N\, and) [see Fig. 2b)]. After n itera-
D,=D,. (99  tions, the original unit square will becomé Rfertical strips
with varying widths\JAp~™,m=0, ... n. It can be shown
IIl. ANALYTICALLY TRACTABLE EXAMPLE that the number of strip&(m,n) with width AT~ ™ is

. . Wticall Igiven by the binomial coefficienb!/(n—m)!m!, and the
To demonstrate our conjecture in an analytically tractab &atural measure for a given strip with widt'Al ™™ (the

hyperbolic system, we use the generalized baker's Faf) fraction of area in the original unit square being mapped into

defined by the following transformation on the unit square strip aftem steps is given bya™8" ™. Thus the natural

[0.1]<[0.1}: measureu(m,n), containing all strips with widtlh\JAp ™™,
NoXn I yp<a is given by
Xn+1= _ : (1039
(1 )\b)‘l‘)\bxn if yn>C¥, n!
mw(mn)=ampgh M ———— (12
yola if yo<a o (n—m)tm!
Yn+1= (Yo—a)IB if y,>a, (100 With the natural measure explicitly given by the above equa-

_ _ o tion, we can compute the average expansion rates with Eq.
where a+B=1 and A, +Np<1. Starting with any initial  (11). Specifically, the average finite time one-dimensional

point (Xo,Yo) within the unit square, afteriterates this map  expansion ratéL,(m,n)) is given by

will have two finite time expansion factors
n

Na(mon)=a”"pm (T M>1, (113 (Lymn)=(\a(mn))= > u(mnya"g~ """
m=0
No(m,n)=NTAp~ <1, (11b n nl
. . _ => ————=2" (13
wherem=0, ... n is an integer that depends on the initial m=o (n—m)!'m!

point (Xg,Yg). In order to compute the average expansion
rates with respect to the natural measureve need to con- The last equality is true by virtue of the binomial theorem
sider the repeated application of this map to a unit square@"=(1+1)"=3]_,[n!/(n—m)!m!]1"1™ This then gives
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FIG. 3. Graph showingﬁ‘a?bO for the generalized baker's
map. The solid line is the graph ﬁfa using Eq.(15); open circles
are numerically solved values ﬁfo using the transcendental equa-
tion (16) at selected values of, . The other parameters are flxed at

=%, B=1-a, and\,=3. Note thatDo=D, for \y=\,=3.

Ei=lim,_..(L.(n))Y"=2. Similarly, we can calculate the
average finite time area expansion rate

(La(m,n))=(N1(m,n)A;(m,n))

o (n—m)!m!

=(Nat+Ap)". (14)
Again, the last equality is true by virtue of the binomial
theorem, andE,=lim,_..(L,(n))"=X,+\,. Then, by
substitutingE; and E, into Eq. (7), we have an explicit
expression foD:

1+ In2
In2

Da= TNt g

(19

Next we show thatD, is an upper bound for the box-
counting dimensio .

We now consider the box-counting dimension of the gen-
eralized baker's map by directly applying the box-counting
definition[Eg. (2)]. Since the invariant set of the generalized

baker’'s map is the product of a Cantor setthe horizontal
direction and the unit interva]0,1] (in the vertical direc-
tion), the y direction will be smoothof dimension }, and
the fractal contribution t®, will be solely from thex direc-

tion. ThusDy=1+ f)o, wheref)o gives the scaling of the
intervals needed to cover the Cantor set onxlaxis. One

way to calculatdﬁo is to utilize the scale invariant property

of the map.f)o can be shown to be given by the transcen-

dental equatiof3,4]
)\Do+)\Do_1 (16)

Figure 3 is a graph oﬁazDa—l and the(numerical
solution to the above equation fbr, as a function of vary-
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ing contraction ratex, (we fix A, at 3 for this study. In the
special case when,=\,,, Eq.(16) can be solved explicitly

to give 150= —In2/In\,, and the conjectured upper bound is
a strict equality, i.e. ]50—6 . This is illustrated in Fig. 3
when A ,=\,=3% and Do— =In2/In3. For asymmetric
values of\; and\y, DO andD separate, and the cur‘«m_1
given by Eq.(15) becomes an upper bound fBrO.

IV. PARTITION FUNCTION FORMALISM

One can analytically argue that in gener@l,=D, by
utilizing the formalism used in Ref§12,13. In this formal-
ism, Dy is determined by considering the following
“Lyapunov partition function” constructed from average
(with respect to the natural measyfenite time expansion
factors,

Y(£,n)=(\1\5) (17)
where 0</=<1. For the generalized baker's map(Z,n)
can be written explicitly in terms of, and\, [see Eq(11)],

)\§m}\§(n m)

y(gm—E M(mn>ﬁ—=<x§+xé>“, (18)

wherew(m,n) is given by Eq.(12).
Defining

L(Q)=lim (y(Z,n)"M=\{+ N

n—oo

(19

and comparing the above equation with the transcendental
equation, Eq(16) for D, one observes that
I'(0)=Ai+Ni=1 for {=D,.

1 (20)

More generally, for typical attractors of two-dimensional
chaotic systems, the authors of Rdfk2,13 conjecture that

if Dy, is definedby

—% for 0<¢{<D,
y(£) . (21)
—0 for Dy<¢<1;
thenDy=1+ 60. In terms ofl", this is equivalent to
>1 for 0<{<D,
r(){ =1 for ¢=D, (22)

<1 for Dy<¢<l.

We show below thaD,=D,—1=D,, and henceD =D,
(provided the above conjecture holddy showing that
rpy=<1.

By the Hdder inequality[22], one can establish the fol-
lowing upper bound for the partition function within the
rangel e[0,1]



382 PAUL SO, ERNEST BARRETO, AND BRIAN HUNT PRE 60

IX(8)

r©

F(Dal) X \\\\

(1)

AN, Ay i
DO Da Da C_,

FIG. 4. The solid line is a graph &f({) vs ¢ for the generalized FIG. 5. By exploiting the concawty of’(¢) (solid curve,

baker's map witha= 3 B=1-a, \,=3, and\,=13 I'=1at  gtraight lines may be used to estimélg. Here, D! is the value of

¢{=Dy. The dotted line is the upper bourd,(¢) =E,(E,/Eq)*. { where a straight line connectidy(0) andI'(1) intersectd™({)

This curve crosseE=1 at our conjectured upper bouﬁlia. =1. D§ is similarly obtained by using the straight line connecting

I'(0) andI'(DY).

V&M =M= (M ah2)d)

[ particular expansion rat¢see Eq(17)]

<0 iwna=o0 2] e

(A1) ['(0)= lim(\)Y"=E,,
n—oe

Then, recalling thal.;=\; and L,=\;\, and taking the

limit n—, we have the following upper bound fbi(¢{): T(1)= lim (A A,) N =E,,

n—oo

< 2> fn Ez ¢
T(O=1im (y(Z,n)*"< lim (L, >1’”( i ) El(E—) _ )
A e (L) ! a simple estimat®? is obtained by the value af where a

(24)  straight line though™(0) andI'(1) crosses 1. One may then
Because the above inequality is an upper boundfaf)  ©btain an improved estima®} by calculatingI'(D3), and

in the rangez e [0,1], we can obtain an upper bound g Using the straight line through (0) andI'(DY). Figure 5
by solving illustrates the procedure. Clearly, the sequence of estimates

£\ ¢ generated by this procedure convergeﬁ)’gp
=E.|=2] =1 An improved sequence of decreasing upper-bound esti-
u(g) 1 . . . .
E mates may be obtained by using more appropriate curves
h | he ab Vv the f han the straight lines used above. A superior set of curves is
The solution to the above equation is precisely the fractional g qested by Eq24) and its geometric interpretation in Fig.
part D of the dimensionlike quantityp,=1+ Da in our 4, There, we showed that our conject{iEg. (1)], is equiva-

conjecture[Eq (D lent to estimating50 by the value of¢ where
-~ InE,

I:)e‘:In E,—InE,’ (25

<)\17\2>){:1

N
= 1>( (M)
See Fig. 4 for a graph df({) and its upper bound ().

By construction,D, will be an upper bound fobD,. In our ~ Call the resulting estimat®’. Using this value, we may
example of the generalized baker's map with parameters apply the Hdder inequality to the partition functiory as
=1 B=1-a, \,=3%, and\,=5, the value oD, calcu-  follows:

lated using the transcendental equatitb6) is 0.409 and the

estimated upper bound using our conjectlieg. (15)] is y(Z,n)=(A1\5)

0.442.

ryo= El(

1- {/D

R WOTLR)

V. ITERATIVE SCHEME FOR REFINING ESTIMATE
21 Sl
. . o <(\a) L E0RAND0) 0
One can successively obtain better estimate®fpby an
1

iterative procedure in the spirit of Newton’s method. The BL \ ¢/Di
procedure, which generates a sequence of estin&ﬁmé}sk ( >< <7‘1)‘2 >) 26)
=1,2,..., isbased on the observation tHa{{) is a convex Y\ '

function[by which we mean thaf”({)>0]. Recall thatf)o R
is given by the value ot whereI'({)=1. Then, with the which is valid forge[O,Dell].
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FIG. 6. Graph showing the construction of the secondAiterative FIG. 7. Estimation Ofbo with large asymmetric contraction
upper-bound fod"(¢) using the two end pointE(0) andF(Dg), rates Q\a=§ and\,= %00) using the iterative upper bound method.

wheref)§= InEL/(In E;—In E,) is our first iterative upper-bound es- The dotted line is the numerically calculatéq using Eq.(16), and

timate ofl50. the open circles are the iterative estimafe§ of 150 using our
procedure. The horizontal axis indicates the number of iterative
. . pl 1 i )
In addition, smce()\l)\sa}s()\1)(()\1)\2>/()\1))Da by vir- steps

tue of Eq.(23), we can also show the following inequality: - cqntinuing the sequence in an analogous fashion, we solve

51, DL gpt 51 (\hg) | 0] r(oy)| %

1-¢/D; a\{/Dy 1-¢/D; .

(A1) (N A, Pas(Ny) <7\1>< D) ) Il =g, Ela -
(MNo) ¢ : . .
=(\y) o (270  to obtain the {(+1)th estimate
Putting Eqs.(26) and (27) together, we have the desired D'+1 D InE,
sequence of inequalities: INE;—In F(ﬁg)
5 A
N a> Pa M\ This sequence of iterative upper bounbg=D2=
Y(&n)<(\y) <)\ ) <(\ 1>( () ) 260 must converge t(ﬁo. Thus, operationally, instead of

actually sampling the partition functidn({) as a function of
Taking thenth root of each term and letting— o, we obtain £ and looking for the location where it crosses 1, our itera-
tive procedure provides a more efficient way to estimate the
T(O<T2(0)<Tk), box-counting dimension by evaluating the partition function

only at a few choice locations, namely, &0,1D?,D?2
etc. Figure 7 is a demonstration of this iterative procedure in
(AN E calculating the box-counting dimension of the generalized
( 172 ) ( 2) baker's map with\ ;= 3 and\,=15; (=3 andB=1—a).
(A1) We choose these values since, recalling Fig. 3, we expect
i that the error betweeB, and D_ should increase with in-
Y > {1(gr) F(ﬁl) a; creasing asymmetry between the two contraction rates
0 2) = 1( a ) and\,. This is indicated by the first open circle in Fig. 7.
1

Although the percentage error of the first iterative upper
1_ . . 0

These inequalities are represented by the concave curves tl)r? und estlmateD 0.39334 is relatively large+38%),

Fig. 6 (note the change of scal(—SoIvmgFu(g“) 1 gives our the sequence of iterative upper bourm§ converges very

where

T'i(0)=lim (A g)tn

n—o

=

I'2(9)=lim (A )"

n—oo

E,

original estimatd Eq. (25)] quickly to the actual value dDO—O 285 16. Also plotted for
comparison is the sequence of estimates obtained by using
~,  InE; straight linegtriangleg, as described at the beginning of this
2 InE;—InE,’ section.
SolvingI'j(¢)=1 gives an improved estimate VI. HIGHER-DIMENSIONAL NONHYPERBOLIC
EXAMPLE
~, ag InE, . ' ) . )
Da:Da( —Al) The generalized baker's map is a hyperbolic map with
INE;—InT'(Dj) invariant hyperbolic subspaces. We now consider our itera-
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single Heon attractor witho=0.3. In Fig. 8, we plot the
numerically estimated, calculated using the iterative pro-
cedure of Sec. V as a function of coupliogFor each dif-
ferent value of the coupling and at each iterative step in our
estimation procedure, the average expansion rates were cal-
culated using a single trajectory o#2L0° iterates, initiated
at a randomly chosen initial condition within the basin of
attraction. The plotted estimates were obtained after ten re-
fining steps.
In the case wher=0, thex andy dynamics decouple
. . . — and the resulting attractor is the direct product of two non-
00 05 10 indentical Haon attractors. Thus its dimension is the sum of
the dimensions of each separate attractor, which we calculate
FIG. 8. Graph oD, for the coupled Heon map as a function of to be 2.4746-0.0001 by applying our algorithm to each
the coupling parametex The lower dotted line is the box-counting Henon map separately. In general, the case of two uncoupled
dimension of a single Heon attractoD=1.28. The upper dotted systems is exceptional for the dimension formalism dis-
line is 2D(=2.56. cussed here, due to the presence of Cantor-like structure
along two independent directions. Accordingly, our algo-
rithm for the full but decoupled system yields a slightly
higher value, 2.52940.0002. For intermediate values of
tive approximation method for a nonhyperbolic system, thecoupling, we expect the attractor to be Cantor-like in one
Henon mapH(u,v;b)=(1.4-u?+bv,u) with b=0.3. Us-  direction only, and the formalism should be accurat.
ing box-counting techniques, the box-counting dimension ofjetailed description of the morphology of desynchronizing
the Henon attractor was reported as 1:28.01 [16]. Our  systems in terms of the changes in its topological entropy
estimate for D, using the iterative method is 1.2746 and dimensions will appear elsewhégs].)
+0.0001, in agreementAt each iterative step in our esti- In summary, we propose E@l) as an easy-to-calculate
mation procedure, the average expansion rates were calcUpper bound estimate for the box-counting dimension of a
lated using a single trajectory of210° iterates, initiated at chaotic attractor. This is actually the first of a decreasing
a randomly chosen initial condition within the basin of at- sequence of upper bounds for the box-counting dimension
traction. The final result is taken after the tenth refining $tep.which we derive. The sequence is based on average expan-
Using the partition formalism, Ott, Sauer, and Yorke obtain asion rates, quantities that are directly measurable from the
D, estimate of 1.27450.0005[13], while Badii and Politi  observed dynamics of the chaotic process. This conjecture
obtain a slightly higher value, 1.275%.0005[12]. While  provides an interesting link between the geometric structure
these results are consistent with each other at the extremy a chaotic attractor to its underlying dynamical properties,
limits of the error bounds, our procedure supports the formeand provides an efficient way to calculate the box-counting

2.5+

g
(=
1

Capacity Dimension D

—
W
1

result. dimension of a chaotic set.
The relative simplicity of our procedure permits the easy
calculation of an attractor’'s box-counting dimension as a ACKNOWLEDGMENTS
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