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Abstract

We design and analyze the dynamics of a large network of theta neurons, which are

idealized Type-I neurons. The network is heterogeneous in that it includes both inher-

ently spiking and excitable neurons. The coupling is global, via pulse-like synapses of

adjustable sharpness. Using recently-developed analytical methods, we identify all pos-

sible asymptotic states that can be exhibited by a mean-field variable that captures the

network’s macroscopic state. These consist of two equilibrium states that reflect partial

synchronization in the network, and a limit cycle state in which the degree of network

synchronization oscillates in time. Our approach also permits a complete bifurcation

analysis, which we carry out with respect to parameters that capture the degree of ex-

citability of the neurons, the heterogeneity in the population, and the coupling strength

(which can be excitatory or inhibitory). We find that the network typically tends towards

the two macroscopic equilibrium states when the neuron’s intrinsic dynamics and the

network interactions reinforce one another. In contrast, the limit cycle state, bifurca-

tions, and multistability tend to occur when there is competition between these network

features. Finally, we show that our results are exhibited by finite network realizations



of reasonable size.

1 Introduction

The cortex of the brain is structured into a complex network of many functional neu-

ral assemblies (Sherrington, 1906; Hebb, 1949; Harris, 2005). Each assembly typically

encompasses a large number of interacting neurons with various dynamical charac-

teristics. Within this network, communication among the neural assemblies generally

involves macroscopic signals that arise from the collective behavior of the constituent

neurons in each assembly. It has been proposed that functional behavior arises from

these interactions, and perceptual representations in the brain are believed to be en-

coded by the macroscopic spatiotemporal patterns that emerge in these networks of

assemblies.

In modeling the brain, a microscopic description of individual neurons and their in-

teractions is important. However, a model for the macroscopic dynamical behavior of

large assemblies of neurons is essential for understanding the brain’s emergent, collec-

tive behavior (Peretto, 1984; Sompolinsky, 1988; Kanamaru & Masatoshi, 2003). In this

work, we construct such a model using the canonical theta neuron of Ermentrout and

Kopell (Ermentrout & Kopell, 1986; Ermentrout, 1996). We construct a large heteroge-

neous network, containing both excitable and spiking neurons, that is globally coupled

via smooth pulse-like synapses. Then, using the methods of (Ott & Antonsen, 2008,

2009; Marvel et al., 2009) (see also (Pikovsky & Rosenblum, 2008, 2011)), we derive

a low-dimensional “reduced” dynamical system that exhibits asymptotic behavior that
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coincides with that of the macroscopic mean field of the network. We use this reduced

system to classify all the asymptotic macroscopic configurations that the network can

exhibit.

We show that our network exhibits three fundamental collective states: a Partially

Synchronous Rest state (PSR), a Partially Synchronous Spiking state (PSS), and a Col-

lective Periodic Wave state (CPW). In the PSR state, most neurons remain at rest but are

excitable, and the macroscopic mean field sits on a stable equilibrium. In the PSS state,

the mean field is also on a stable equilibrium, but typically, most individual neurons

spike regularly. These states are similar to states that have been called “asynchronous”

(Abbott & van Vreeswijk, 1993; Hansel & Mato, 2001, 2003). We find that they are

typically encountered in “cooperative” networks in which the internal dynamics of the

neurons and the inter-neuronal network interactions reinforce each other. In other pa-

rameter regions where the internal dynamics and network interaction are in competition,

a collective periodic state, the CPW state, can occur. In the CPW state, the phases of

the neurons transiently cluster, and the degree of network coherence waxes and wanes

periodically in time in such a way that the macroscopic mean field exhibits a stable limit

cycle.

These three macroscopic states can coexist and transition into each other, and here

we clarify precisely how this happens using our “reduced” mean field equation. We

obtain a complete bifurcation diagram with respect to parameters that represent the

degree of excitability, heterogeneity, and the strength of coupling (both excitatory and

inhibitory) within the network. Our model provides a comprehensive description for the

asymptotic macroscopic behavior of a large network of heterogeneous theta neurons in
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the thermodynamic limit.

The remainder of this paper is organized as follows. In Section 2, we describe

the basic features of our theta neuron network, and in Section 3, we derive the mean

field reduction using the Ott-Antenson method (Ott & Antonsen, 2008, 2009; Marvel

et al., 2009). Then, in Section 4, we use the reduced mean field equation to identify

and describe the three possible macroscopic states (PSR, PSS, and CPW). In Section 5,

we provide a comprehensive bifurcation analysis for the macroscopic dynamics of the

network. Finally, we summarize and discuss our results in Section 6.

2 Microscopic Formulation

The brain contains a huge number of different types of neurons which feature various

dynamical characteristics. Here, we construct a mathematically-tractable network that

encompasses three fundamental characteristics: neuronal excitability, pulse-like cou-

pling, and heterogeneity.

2.1 Neuronal Excitability: The Theta Neuron

A typical neuron at rest begins to spike as a constant injected current exceeds a thresh-

old. Neurons are usually classified into two types based on this behavior (Hodgkin,

1948; Ermentrout, 1996; Izhikevich, 2007). Type-I neurons begin to spike at an ar-

bitrarily slow rate, whereas Type-II neurons spike at a non-zero rate as soon as the

threshold is exceeded. Neurophysiologically, excitatory pyramidal neurons are often

of Type-I, and fast-spiking inhibitory interneurons are often of Type-II (Nowak et al.,
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2003; Tateno et al., 2004) 1

Ermentrout and Kopell (Ermentrout & Kopell, 1986; Ermentrout, 1996) showed

that, near the firing threshold, Type-I neurons can be represented by a canonical phase

model that features a saddle-node bifurcation on an invariant cycle, or a SNIC bifurca-

tion. This model has come to be known as the theta neuron, and is given by

θ̇ = (1− cos θ) + (1 + cos θ)η, (1)

where θ is a phase variable on the unit circle and η is a bifurcation parameter related

to an injected current. The SNIC bifurcation occurs for η = 0. For η < 0, the neu-

ron is attracted to a stable equilibrium which represents the resting state. An unstable

equilibrium is also present, representing the threshold. If an external stimulus pushes

the neuron’s phase across the unstable equilibrium, θ will move around the circle and

approach the resting equilibrium from the other side. When θ crosses θ = π, the neuron

is said to have spiked. Thus, for η < 0, the neuron is excitable. As the parameter η

increases, these equilibria merge in a saddle-node bifurcation and disappear, leaving

a limit cycle. Consequently, the neuron spikes regularly. This transition is depicted

schematically in Figure 1.

In this paper, we construct our network using only theta neurons. Future work will

consider networks containing mixtures of Type-I and Type-II neurons.

1Most theoretical studies only consider these two stereotypical behaviors, but see (Skinner, 2013).
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Figure 1: The SNIC bifurcation of the theta neuron. For η < 0, the neuron is at rest

but excitable. For η > 0, the neuron spikes regularly. The SNIC bifurcation occurs at

η = 0. A spike is said to occur when the phase variable θ crosses π.

2.2 Coupling via a Pulse-Like Synapse

We consider a network of N theta neurons coupled together via a synaptic current Isyn:

θ̇j = (1− cos θj) + (1 + cos θj) [ηj + Isyn] , (2)

with j = 1, . . . , N . Thus, the synaptic current changes the effective excitability param-

eter of the jth neuron.

We write Isyn as a collective signal in which each neuron contributes a pulse-like

synaptic current depending on its phase angle. Thus,

Isyn =
k

N

N∑
i

Pn(θi), (3)

where Pn(θ) = an (1− cos θ)n, n ∈ N, and an is a normalization constant such that

∫ 2π

0

Pn(θ)dθ = 2π.

The parameter n defines the sharpness of the pulse-like synaptic current Pn(θ) (Ariarat-

nam & Strogatz, 2001) such that it becomes more and more sharply peaked at θ = π as

n increases, as shown in Figure 2. The sum in Eq. (3) is over the entire population, and

k is the overall synaptic strength for the whole network.
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Figure 2: A plot of the synaptic function Pn(θ) for different values of the sharpness

parameter n. As n increases from 1 to 9, the shape of the synaptic function becomes

more pulse-like around the firing state at θ = π.

2.3 Heterogeneity

Neurons in real biological networks exhibit a range of intrinsic excitabilities. To model

this, we assume that the parameter ηj for each neuron is different and is drawn at random

from a distribution function g(η). Here we assume a Lorentzian distribution,

g(η) =
1

π

∆

(η − ηo)2 + ∆2
, (4)

where ηo is the center of the distribution and ∆ is its half-width at half-maximum. Thus,

∆ describes the degree of neuronal heterogeneity in the network. Since g(η) always

includes both positive and negative η’s, our network therefore contains a mixture of

both excitable and spontaneously spiking neurons, with the ratio being biased in favor

of one or the other depending on the chosen value of η0.
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3 Mean-Field Reduction of the Network

In the limit N → ∞, the system affords a continuum description in which the net-

work of theta neurons can be described by a probability density function F (θ, η, t)

(Kuramoto, 1975, 1984). Thus, F (θ, η, t)dθdη gives the fraction of oscillators that have

phases in [θ, θ + dθ] and parameters in [η, η + dη]. The time evolution of F is governed

by the continuity equation

∂F

∂t
+

∂

∂θ
(Fvθ) = 0, (5)

where vθ, the “velocity” of a neuron, is the continuum version of Eqs. (2)-(3),

vθ = (1 + η)− (1− η) cos θ + ank (1 + cos θ)

2π∫

0

dθ′
∞∫

−∞

dη′ F (θ′, η′, t) (1− cos θ′)n
.

(6)

In order to explore the collective behavior of this network, we introduce the macro-

scopic mean field (also known as the order parameter) z(t), which describes the macro-

scopic coherence of the network and is defined as

z(t) ≡
2π∫

0

dθ

∞∫

−∞

dη F (θ, η, t) eiθ. (7)

We now derive a “reduced” dynamical system that exhibits asymptotic behavior

that coincides with the asymptotic behavior of the mean field z(t) of the network. Our

procedure follows Refs. (Ott & Antonsen, 2008, 2009; Marvel et al., 2009).

The velocity equation, Eq. (6), can be written in sinusoidally coupled form (Marvel

et al., 2009) such that the explicit dependence on the individual oscillator’s phase θ

occurs only through the harmonic functions eiθ and e−iθ :

vθ = feiθ + h + f ∗e−iθ (8)
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with

f = −1

2
[(1− η)− kH(z, n)] (9)

and

h = (1 + η + kH(z, n)). (10)

Here, z is the mean field variable introduced in Eq. (7), n is the sharpness parameter

of the synapse as previously described, and H(z, n) = Isyn/k is the rescaled synaptic

current given by 2

H(z, n) = an

(
A0 +

n∑
q=1

Aq(z
q + z∗q)

)
, (11)

where

Aq =
n∑

j,m=0

δj−2m,qQjm (12)

and

Qjm =
(−1)j−2mn!

2jm!(n− j)!(j −m)!
. (13)

In these equations, z∗ denotes the complex conjugate of z and δi,j is the Kronecker delta

function on the indices (i, j). Note that H(z, n) = H∗(z, n) is a real-valued function.

Now we adopt the ansatz that the probability density function F can be written as

a Fourier expansion in which the coefficients appear as powers of a single yet-to-be-

determined complex function α(η, t):

F (θ, η, t) =
g(η)

2π

{
1 +

∞∑
q=1

(α∗(η, t)qeiqθ + α(η, t)qe−iqθ)

}
. (14)

2In Eq. (11), the q-th powers of the order parameter z and its complex conjugate z∗ appear. More

generally, these terms should be replaced by the Daido moments zq(t) =
∫ 2π

0
dθ

∫∞
−∞ dη F (θ, η, t)eiqθ

(Daido, 1996). However, with the the choice of the Lorentzian distribution for g(η), we have zq = zq for

q ≥ 0, and zq = (z∗)q for q < 0.
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This ansatz defines a two-dimensional manifold (parameterized by the real and imag-

inary parts of α) in the space of all probability density functions. In (Ott & Anton-

sen, 2008), the authors showed that this manifold is invariant if and only if α satisfies

|α(η, t)| < 1 as well as the following differential equation (which is obtained by substi-

tuting Eq. (14) into Eq. (5)) :

α̇ = i(fα2 + hα + f ∗). (15)

The macroscopic mean field can be written as an integral transform of g(η) with α(η, t)

as the kernel by substituting Eq. (14) into Eq. (7). This gives

z(t) =

∫ ∞

−∞
α(η, t)g(η)dη. (16)

The integro-differential equations defined by Eqs. (15) and (16) give the general

equation of motion for the asymptotic behavior of the macroscopic mean field z(t).

Now, permitting η to be complex, and analytically continuing α(η, t) into the upper

half of the complex η plane, and further assuming that g(η) is given by the Lorentzian

in Eq. (4), the integral in Eq. (16) can be evaluated in closed form using the residue

theorem. The result is

z(t) = α(ηo + i∆, t),

where ηo is the center and ∆ is the half-width-at-half-maximum of the natural frequency

distribution g(η) given in Eq. (4).

Finally, by substituting f (Eq. (9)) and h (Eq. (10)) into Eqs. (15) and (16) and

evaluating at the residue, we arrive at the desired reduced dynamical system:

ż = −i
(z − 1)2

2
+

(z + 1)2

2
[−∆ + iη0 + ikH(z, n)] . (17)
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In accordance with (Ott & Antonsen, 2009), we find that the attractors of this two-

dimensional ordinary differential equation are the attractors of the macroscopic dynam-

ics for the infinite discrete network given by Eqs. (2)-(4) with N →∞. 3

4 Macroscopic Dynamics of the Network

By analyzing the reduced mean field equation Eq. (17), we find that there are three

possible asymptotic macroscopic states for the network. Two of these, which we call the

partially synchronous rest (PSR) state and the partially synchronous spiking (PSS) state,

correspond to equilibria of the macroscopic mean field. The third, which we call the

collective periodic wave (CPW) state, corresponds to a limit cycle of the macroscopic

mean field.

4.1 Macroscopic Equilibrium States

In the PSR state, the macroscopic mean field z(t) of the network settles onto a stable

node. This state is predominantly (but not exclusively) observed when the distribu-

tion of excitability parameters is such that most neurons are in the resting regime (e.g.,

η0 + ∆ . 0), and the neurons are coupled through inhibitory synapses (k < 0). Thus,

most neurons are inactive, with their phase angles residing near their resting states.

Nevertheless, some spiking neurons are present. These come from the tail of the g(η)

3This method of analysis has been applied to other coupled networks of similar form, for example,

(Pikovsky & Rosenblum, 2008; Abrams et al., 2008; Marvel & Strogatz, 2009; Martens et al., 2009;

Abdulrehem & Ott, 2009; So & Barreto, 2011; Montbrió and Pazó, 2011; Pikovsky & Rosenblum, 2011;

Alonso & Mindlin, 2011; Omel’chenko & Wulfrum, 2012; So et al., 2013).

12



PSR

HaL HbL HcL

Figure 3: Phase portraits of the PSR macroscopic state with η0 = −0.2, ∆ = 0.1,

k = −2, and n = 2. (a) The stable node of the PSR state is shown with its local

dynamics calculated using the reduced dynamical system (Eq. 17). (b) A trajectory,

with transients removed, of the macroscopic mean field for the PSR state calculated

from a network of N = 10, 000 theta neurons using Eqs. (2-4). (c) A magnification of

the the PSR state shown in panel (b). The dimensions of the box are x = Re(z(t)):

−0.5360 to −0.5300; y = Im(z(t)): −0.8345 to −0.8285. Fluctuations due to finite-

size effects are small but visible in this zoomed-in view.

distribution and have a negligible effect on the collective behavior of the network. Fig-

ure 3a shows an example of the macroscopic PSR equilibrium, with its local invariant

manifolds calculated using the reduced mean field equation, Eq. (17), using η0 = −0.2,

∆ = 0.1, k = −2, and n = 2. (A movie showing the both the macroscopic and

microscopic behavior of the PSR state in Figure 3 is available in the Supplemental

Information.) Figures 3b and c show a trajectory, after the initial transient behavior

has been discarded, of the macroscopic mean field z(t) calculated from a network of

N = 10, 000 theta neurons with the same system parameters. As expected, the slightly

noisy trajectory hovers about the predicted equilibrium with fluctuations roughly on the
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order of 1/
√

N .

In the PSS state, the macroscopic mean field z(t) settles onto a stable focus. The

collective behavior of the infinite network is again at rest, but in this case there is an

intrinsic circulation, as the local stability of the equilibrium is given by a pair of com-

plex eigenvalues (with negative real parts). This state occurs predominantly (but not

exclusively) when most neurons inherently spike (η0−∆ & 0), with the coupling being

either be excitatory (k > 0) or weakly inhibitory (k . 0). Thus, even though most

neurons are active, the network is partially synchronous and organized such that phase

cancellation among the neurons results in a well-defined stationary macroscopic mean.

Figure 4a shows an example of the macroscopic PSS state obtained using the re-

duced system (Eq. (17)) with η0 = 0.2, ∆ = 0.1, k = 2, and n = 2. (A movie showing

the both the macroscopic and microscopic behavior of the PSS state in Figure 4 is avail-

able in the Supplemental Information.) As before, panels b and c show the mean field

trajectory z(t) of a network of N = 10, 000 neurons at the same parameter values. The

reduced system once again accurately predicts the ultimate macroscopic state of the

network, and finite-size network effects reveal bouts of coherent circulation about the

focus.

Both the PSR and PSS states exhibit stationary behavior in the macroscopic mean

field z(t) and reflect partially coherent network configurations. We emphasize here the

subtle difference between them: one is a node in the macroscopic mean field, and the

other is a focus. This observation suggests that transient behavior in the macroscopic

mean field z(t) resulting from abrupt perturbations of network parameters should reveal

the difference between these two states.
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Figure 4: Phase portraits of the PSS macroscopic state with η0 = 0.2, ∆ = 0.1, k = 2,

and n = 2. (a) The stable focus of the PSS state is shown with its local dynamics

calculated using the reduced model (Eq. 17). (b) A trajectory, with transients removed,

of the macroscopic mean field for the PSS state calculated from a network of N =

10, 000 theta neurons using Eq. (2-4). (c) A magnification of the the PSS state shown

in panel (b). The dimensions of the box are x = Re(z(t)): −0.2815 to −0.2415;

y = Im(z(t)): −0.0250 to 0.0150. Fluctuations due to finite-size effects are small but

visible in this zoomed-in view.
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Figure 5 shows time series of the macroscopic mean field z(t) for both the PSR

(panels a and b) and the PSS (panels c and d) states. For the PSR state, the system

starts with the following parameter set: η0 = −0.2, ∆ = 0.1, k = −2, and n = 2.

Then, at t = 500, η0 is abruptly switched from −0.2 to −0.5. The new asymptotic state

remains a PSR state (with Lyapunov exponents λs = −2.51,−3.94), but the stable

node shifts, and the macroscopic mean field z(t) converges exponentially toward the

new asymptotic value. The time series from both the reduced system (Figure 5a) and

a discrete network of 10, 000 neurons (Figure 5b) clearly demonstrate this exponential

convergence.

The results from applying the same procedure to a PSS state (with ∆ = 0.1, k = 2,

and n = 2, and η0 changing from 0.2 to 0.5) is shown in Figures 5c and d. In this case,

the perturbed PSS state is characterized by a stable focus with a pair of stable complex

eigenvalues (λs = −0.061 ± 3.25i). Thus, the transient behavior after the parameter

shift exhibits prominent oscillations that do not occur in the PSR case.

The PSR and PSS states are the expected macroscopic states when the network’s

intrinsic dynamics (as parameterized by the excitability parameter η0) and the synaptic

interactions (as characterized by the coupling k) are not in competition. The PSR state

tends to occur when a majority of the neurons are intrinsically at rest (η0 + ∆ . 0)

and the overall coupling is inhibitory (k < 0). Conversely, the PSS state tends to occur

when a majority of the neurons inherently spike (η0 −∆ & 0) and the overall coupling

is excitatory (k > 0). In these cases, the internal dynamics and the network interaction

reinforce each other, and the resulting macroscopic dynamics is a simple equilibrium.

We show in the following section that a more complicated dynamical state can occur

16



-0.6

-0.5

450 500 550

-0.6

-0.5

t

x b)

a)

-0.30

-0.25

450 500 550

-0.30

-0.25

t

x
d)

c)

Figure 5: Time series of the real part of the macroscopic mean field x = Re(z(t))

showing the very different responses of the PSR and PSS states to a sudden small change

in η0 at t = 500. (a) shows the behavior of the reduced equation (Eq. 17) and (b) shows

the time series calculated using a network of 10, 000 theta neurons for the PSR state.

(c) and (d) show the same for the PSS state. The horizontal dotted lines indicate the

asymptotic values of the macroscopic equilibria at the initial and perturbed η0 values.

The parameter values are given in the main text.
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when the intrinsic neuronal dynamics and the network interaction compete with one

another.

4.2 Macroscopic Limit Cycle State and Multistability

In the CPW state, the macroscopic mean field settles onto a stable limit cycle, and

z(t) oscillates in time. We adopt this terminology based on previous work in which a

collective oscillatory state of this type, when viewed from the microscopic perspective,

was described as a wave (Crawford, 1994; Ermentrout, 1998; Bressloff, 1999; Osan

et al., 2002). Here, we find that this state occurs when most neurons are active (η0 > 0)

and the synaptic interaction is inhibitory (k < 0). The microscopic configuration of the

neurons is such that the degree of coherence waxes and wanes in time as the phases of

the neurons corral together and spread apart in a periodic manner. Thus, the collective

oscillation reflects the interplay between the neurons’ inherent tendency to spike and

the suppressive network interaction. Indeed, we show below that the occurrence of

CPW states is mediated by Andronov-Hopf and homoclinic bifurcations of the mean

field, and thus are emergent properties of the network. In particular, the frequency of

the limit cycle for a CPW state is not simply related to the frequencies of the individual

neurons. In addition, the macroscopic limit cycle takes on different shapes and sizes for

different system parameters, thus indicating different microscopic wave patterns.

A particular example of the CPW state is shown in Figure 6. As before, panel a

shows the attractors predicted by Eq. (17) with η0 = 10.75, ∆ = 0.5, k = −9, and n =

2. (A movie showing the both the macroscopic and microscopic behavior of the CPW

state in Figure 6 is available in the Supplemental Information.) In this case, an attracting
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Figure 6: (a) Phase portraits of the asymptotic macroscopic states that occur with net-

work parameters η0 = 10.75, ∆ = 0.5, k = −9, and n = 2. (a) The reduced equation

(Eq. 17) predicts the coexistence of a stable node (PSR), a saddle equilibrium, an un-

stable focus, and a stable limit cycle state (CPW) for the macroscopic mean field. (b)

The asymptotic macroscopic states exhibited by a finite network with 10, 000 neurons.

Two mean-field trajectories showing the PSR and CPW states are shown; these were

obtained with different initial conditions after transients were discarded. (c) A close-up

of a section of the CPW limit cycle. The dimensions of the box are x = Re(z(t)):

0.5050 to 0.6550; y = Im(z(t)): −0.0750 to 0.0750. Fluctuations in the trajectory are

due to finite-size effects.

CPW limit cycle and a PSR node coexist. There are two unstable equilibria present

as well. Panel b shows the asymptotic mean field behavior of a network of 10, 000

neurons, where separate runs with different initial conditions were used to demonstrate

the coexistence of the two attractors. Once again, the reduced mean field equation gives

an excellent prediction for the asymptotic temporal behavior of the full network.

For most regimes in parameter space, the macroscopic behavior of the network is

found to exclusively approach just one of the above defined states, i.e., there is only a
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single macroscopic attractor. However, there are significant parameter regions in which

the network exhibits multistability, where two or more of these macroscopic states are

found to coexist. Indeed, the example shown in Figure 6 is an example of multistabil-

ity in which both a stable CPW state and a stable PSR state coexist. For parameters

within these multistable regions, the network approaches one of the stable macro-states

depending on how the neurons in the network are configured initially. We find, based

on our bifurcation analysis of the mean field equation (Section 5), that dynamical com-

petition is a necessary ingredient for the emergence of multistability. (A more detailed

analysis of the multistable state for a similar but non-autonomous network of theta neu-

rons is reported in (So et al., 2013).)

(A singular situation occurs with ∆ = 0, corresponding to a homogeneous net-

work of neurons. Due to the high degree of symmetry present in this case, the collec-

tive behavior consists of many coexisting neutrally stable limit cycles, and the overall

macroscopic dynamics can be counter-intuitively more complicated than the heteroge-

neous case studied here. A more detailed analysis of this homogeneous case and other

extensions of this work will be reported elsewhere.)

One can also entertain the notion of unstable macroscopic PSR, PSS, or CPW states,

as was mentioned above in passing. Although these are not typically observable in the

collective behavior of the physical network, we will demonstrate in the next section

that they play an important role in mediating the transitions among the three classes of

observable (attracting) macroscopic states.
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5 Bifurcation Analysis of the Macroscopic States

Having identified the three classes of attractors for the macroscopic mean field z(t), we

now turn our attention to the analysis of the bifurcations that they can undergo. Specif-

ically, we identify the bifurcations that occur as the following network parameters are

varied: the neurons’ intrinsic excitability parameter η0, the heterogeneity parameter

∆, and the overall coupling strength k. We consider both excitatory (k > 0) and in-

hibitory (k < 0) interaction among the neurons. The bifurcation set will be illustrated

in the three-dimensional parameter space defined by η0, ∆, and k, for fixed values of

the synaptic sharpness parameter n. In our examples we use n = 2 and n = 9, and

our results suggest that the bifurcation scenarios described here are qualitatively robust

with respect to n.

We begin by separating the reduced system, Eq. (17), into its real and imaginary

parts, where z(t) = x(t) + iy(t):

ẋ = fn(x, y; η0, ∆, k) = (x− 1)y − (x + 1)2 − y2

2
∆− (x + 1)y[η0 + kH(z, n)],

ẏ = gn(x, y; η0, ∆, k) = −(x− 1)2 − y2

2
− (x + 1)y∆ +

(x + 1)2 − y2

2
[η0 + kH(z, n)].

(18)

Then, by setting the right side of both of these equations equal to zero, we obtain two

conditions for the macroscopic equilibria of the network (xe, ye) as a function of the

three network parameters:

fn(xe, ye; η0, ∆, k) = 0,

gn(xe, ye; η0, ∆, k) = 0. (19)

Now, instead of solving Eqs. (19) for xe and ye given particular values of η0, ∆, and k,
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we consider xe, ye, η0, ∆, and k to be five independent variables and think of Eqs. (19)

as two constraints that define a three-dimensional submanifold on which the equilibria

must reside. Algebraic conditions for the occurrence of a particular kind of bifurcation

provide additional constraints, thus defining a lower-dimensional surface (or surfaces)

that characterizes the bifurcation of interest.

For a generic codimension-one bifurcation such as the saddle-node (SN) or the

Andronov-Hopf (AH) bifurcation, this procedure results in two-dimensional surfaces

embedded in the full five-dimensional space. We can visualize these two-dimensional

bifurcation sets in the three-dimensional space defined by the network parameters η0, ∆,

and k. In the following, we examine the saddle-node (Section 5.1) and the Andronov-

Hopf (Section 5.2) bifurcations separately, and infer (and numerically verify) that ho-

moclinic bifurcations are present as well. We also describe (Section 5.3) the transition

between the PSR and the PSS states in which a macroscopic equilibrium changes from

a node to a focus, or vice versa. We call this a node-focus (NF) transition. This transi-

tion is not typically classified as a bifurcation in the traditional sense, since the stability

of the equilibrium does not change, nor are additional states created or destroyed. Nev-

ertheless, it is desirable to know where in parameter space this transition occurs, since

the type of equilibrium (i.e., focus or node) can have macroscopic consequences, as il-

lustrated in Figure 5. Collectively, these results lead to an understanding of the various

bifurcations and transitions that can occur in the attractors of the macroscopic mean

field of our network.

22



5.1 Saddle-Node Bifurcation

The saddle-node bifurcation is defined by the condition

det[J(xe, ye, η0, ∆, k)] = 0, (20)

where J(xe, ye, η0, ∆, k) is the Jacobian of the system given by Eqs. (18). Since our

reduced equation is two-dimensional, all saddle-node bifurcations that occur in our net-

work must necessarily involve PSR states. This is because the creation of a pair of PSS

equilibrium states requires at least three dimensions (two corresponding to the complex-

conjugate eigenvalues, and one along the heteroclinic connection). Note also that the

above determinant condition includes the codimension-two cusp bifurcation when both

eigenvalues of J are zero simultaneously. The combination of the three algebraic con-

straints given in Eqs. (19) and (20) allows us to solve for η0, ∆, and k in terms of the

remaining two degrees of freedom, xe and ye. We then plot the SN bifurcation surface

parametrically in (η0, ∆, k) by considering all possible values of (xe, ye) within the al-

lowed state space (‖z‖ ≤ 1). The SN bifurcation surfaces obtained in this manner are

displayed in Figure 7. Panels a and b show the surfaces obtained for synaptic sharpness

parameters n = 2 and n = 9, respectively, and panel c is a magnification of a. Note that

these figures extend into the unphysical region where ∆ < 0. This is done to help the

reader visualize the shape of the surfaces, as they are symmetric across ∆ = 0.

The bifurcation set consists of two similar tent-like structures. The edges of the

tent-like surfaces correspond to parameter values where a codimension-two cusp bifur-

cation occurs. It is notable that these tent-like structures are predominately (but not

exclusively) located in regions where the internal excitability parameter η0 and the cou-
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Figure 7: The saddle-node (SN) bifurcation surfaces in the three-dimensional parameter

space (η0, ∆, k) for synaptic sharpness parameter (a) n = 2 and (b) n = 9. To aid in

visualization, the figures extend into the unphysical region where ∆ < 0 (the surfaces

are symmetric across ∆ = 0). The rough edges in a are due to numerical limitations.

(c) is a magnification of panel a. The black line segments in a and c represent paths in

parameter space that are keyed to Figures 8c and 11c.
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pling strength k are of opposite sign, for both excitatory and inhibitory connectivity.

This is the dynamically competitive region mentioned above. Furthermore, the similar-

ity between the surfaces in a (for n = 2) and b (for n = 9) indicate the robustness of

our results with respect to the synaptic sharpness parameter n.

Panel a includes two line segments, one parallel to the k axis (with η0 = −0.3, ∆ =

0.08), and the other parallel to the η0 axis (with ∆ = 0.5, k = −9). Panel c is a magni-

fication of a in the vicinity of the former, showing how this line segment pierces the SN

surfaces. These line segments are keyed to Figures 8c and 11c, which will be discussed

below, in order to clarify which macroscopic states exist and which bifurcations occur

as parameters are traversed along these lines.

Figure 8a shows a two-dimensional slice through the n = 2 tent at η0 = −0.3.

A typical fold structure with two saddle-node curves meeting at a codimension-two

cusp point is seen. Panel b shows the one-dimensional bifurcation diagram, plotting

y = Im(z) versus k, that results from following k along the line ∆ = 0.08 (dotted

line in panel a; this is the same as the vertical line segment in Figures 7a and c). This

diagram shows how the equilibrium solutions evolve as k increases from zero. Initially,

there is an attracting PSS state. This changes into a PSR state at the NF transition

point indicated by the open diamond at k = 0.1028. As k increases further, this PSR

state gradually migrates towards higher values of y. Then, a SN bifurcation and a NF

transition point occur in rapid succession at k = 0.9067 and k = 0.9075, respectively

(these points are not resolvable at the resolution shown in the figure and are therefore

marked “SN/NF”). This SN bifurcation creates new stable and unstable PSR states in

a separate region of state space (near y = −0.08), and at the NF point, the stable PSR
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Figure 8: (a) A two-dimensional slice of the saddle-node bifurcation set shown in Figure

7a with η0 fixed at −0.3. Saddle-node (SN) bifurcations occur on the solid curves, and

these meet at a cusp point. (b) A one-dimensional bifurcation diagram (y = Im(z)

vs. k) corresponding to the dashed line in (a) at ∆ = 0.08. The solid lines indicate stable

PSR (node) or PSS (focus) equilibria as labeled, the broken line is an unstable PSR

equilibrium, and the open diamonds indicate node-focus (NF) transition points. The

circle is the saddle-node (SN) bifurcation corresponding to the right SN curve in panel

(a). The other SN point is so close to an NF point that they cannot be distinguished here,

and are marked SN/NF. (c) Schematic representation of the sequence of bifurcations

(left) and macroscopic states (right) that occur as k traverses the range shown in (b);

this is the same as the vertical line in Figures 7a and c. The shaded interval indicates

multistability.
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changes into a stable PSS state. As k increases further, this stable PSS state persists,

while the unstable PSR state migrates towards smaller values of y and collides with

the coexisting stable PSR state. These annihilate each other via the SN bifurcation at

k = 1.1237. This sequence of events is shown schematically collapsed onto the k axis

in panel c, so that it can be compared to the vertical line segment in Figures 7a and c.

The shaded region indicates an interval in which more than one stable attractor exists.

Note also that a NF transition occurs at a negative value of k (−0.5697) that is not

visible in panel b.

5.2 Andronov-Hopf Bifurcation

The Andronov-Hopf bifurcation is defined, for our two-dimensional system, by two

conditions,

tr[J(xe, ye, η0, ∆, k)] = 0, and

det[J(xe, ye, η0, ∆, k)] > 0. (21)

Eqs. (21) combined with Eqs. (19) give three equations for five unknowns, with the

additional constraint that det[J] must be greater than zero. Proceeding as before, we

obtain two-dimensional parametric plots of the AH bifurcation surface, shown in Fig-

ure 9. In this case, there is qualitative similarity between the shapes for n = 2 (panel

a) and n = 9 (panel b) cases, but there are quantitative differences in the location of

the surfaces. Note also the line segment included in panel a (with ∆ = 0.5, k = −9);

this is the same as the horizontal line segment that appears in Figure 7a, and is keyed to

Figure 11c.
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Figure 9: The Andronov-Hopf (AH) bifurcation surface in the three-dimensional pa-

rameter space (η0, ∆, k) for sharpness parameter (a) n = 2 and (b) n = 9. To aid in

visualization, the figures extend into the unphysical region where ∆ < 0 (the surfaces

are symmetric across ∆ = 0). The black line segment in a is the same as the horizontal

line segment that appears in Figure 7a, and represents a path in parameter space that is

keyed to Figure 11c.
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The result is a tube or funnel-shaped surface that opens and flattens out on one side.

The funnel emanates from the regime of large inhibitory coupling (k ¿ 0) and less

heterogeneity (∆ ' 0) with η0 ' 0 (i.e., most neurons are very close to their SNIC

bifurcations), and then opens up and flattens out for increasing values of η0 (i.e., greater

dominance of spiking neurons). As in the case of the SN bifurcation, the surface occurs

most prominently where there is dynamic competition within the network. However, in

this case, the surface only exists where the competition is specifically between predom-

inantly active neurons and inhibitory network interaction (η0 > 0 and k < 0).

Figure 10a shows the two-dimensional bifurcation diagram that results from slicing

through the n = 2 AH and SN surfaces at k = −9. The two SN curves again meet at

a cusp, and the AH curve intersects the left SN curve at a codimension-two Bogdanov-

Takens (BT) point. The dotted rectangular region shown in panel a is magnified in panel

b, making it easier to see the AH curve, as well as the homoclinic (HC) bifurcation

curve that also emerges from the BT point (Kuznetsov, 2004). We identify the latter

curve numerically. 4

To further clarify the identity of the macroscopic network states, Figure 11a shows

the one-dimensional bifurcation diagram (in this case, x = Re(z) vs. η0) obtained by

varying η0 along the line ∆ = 0.5 (dashed lines in Figure 10; these are the same as the

horizontal lines in Figures 7a and 9a). Here, the heavy solid lines represent stable equi-

libria. The lower equilibrium branch corresponds to the PSR state, and it persists until

it collides with an unstable PSR state in a saddle-node bifurcation. Moving along the

4Because the HC bifurcation is a global bifurcation, it cannot be specified by a set of simple algebraic

conditions.
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Figure 10: (a) Superimposed two-dimensional slices of both the SN (Figure 7a) and

AH (Figure 9a) bifurcation sets at k = −9. The saddle-node (SN) curves meet at a

cusp point, and a Bogdanov-Takens (BT) point (triangle) occurs on the left SN curve.

The dotted rectangular region in (a) is magnified in (b), showing the Andronov-Hopf

(AH) and homoclinic (HC) bifurcation curves. The HC curve was interpolated from the

points indicated by the circles, which were found numerically.
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Figure 11: (a) A one-dimensional bifurcation diagram (x = Re(z) vs. η0) correspond-

ing to the dashed lines in Figure 10 at ∆ = 0.5. The solid (dashed) curves are stable

(unstable) PSR and PSS equilibria as indicated. SN denotes a saddle-node bifurcation.

The solid black circles indicate the maximum and minimum values of x for the CPW

limit cycle that emerges from the supercritical Andronov-Hopf (AH) point. The exis-

tence of this limit cycle also transitions at the indicated homoclinic (HC) bifurcation.

(b) A magnification of the region near the node-focus (NF) point, showing the other

SN bifurcation. (c) Schematic representation of the sequence of bifurcations (top) and

macroscopic states (bottom) that occur as η0 traverses the range shown in a; this is

the same as the horizontal lines in Figures 7a and 9a. The shaded interval indicates

multistability.
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upper stable equilibrium with decreasing η0, the network exhibits the PSS state before

encountering the AH bifurcation, which is supercritical. At this point the equilibrium

loses stability, and an attracting limit cycle emerges, i.e., the CPW state. The ampli-

tude of this limit cycle subsequently increases until it collides with the unstable (uPSR)

equilibrium in a homoclinic bifurcation.

Figure 11b shows a magnification of the vicinity of the SN/NF point in panel a,

showing both the SN and NF points distinctly. This SN point corresponds to the left SN

curve in Figure 10a, and in this case, leads to the creation of two unstable PSR states.

Finally, the sequence of events shown in Figure 11a is shown schematically col-

lapsed onto the η0 axis in panel c, so that it can be compared to the horizontal line

segments shown in Figures 7a and 9a.

5.3 PSR to PSS Transition

In Figures 8 and 11, we indicated that the stable equilibria depicted there make transi-

tions between the PSR and PSS states. These transitions occur when the equilibrium

changes from a node (PSR state; real eigenvalues) to a focus (PSS state; complex eigen-

values), or vice versa. This change is not normally considered a bifurcation since there

is no change in stability or creation of other states. Nevertheless, it is possible to identify

surfaces in the parameter space that correspond to this transition. We call this transition

the node-focus (NF) transition.

The node-focus transition occurs when the discriminant of the characteristic equa-

tion of the Jacobian equals zero, thus signifying the presence of equilibria with real
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eigenvalues of multiplicity two:

tr[J ]2 − 4 det[J ] = 0. (22)

To identify the transition surface, we proceed as before by directly plotting the two-

dimensional parametric surface in the three-dimensional parameter space (η0, ∆, k) us-

ing the three algebraic constraints given in Eqs. (19) and (22). The result is shown in

Figure 12. As before, panels a and b show the surfaces for n = 2 and n = 9, respec-

tively, and panel c is a magnification of a. The horizontal and vertical lines of Figures

7a and 9a, which are linked to Figures 8c and 11c, are included.

Figure 12 reveals two surfaces: a lower surface with an internal pleat somewhat like

a fortune cookie, and an upper folded surface like the nose cone of an airplane. The

PSS state occurs in the region in the far upper right corner of panels a and b. Here, the

network dynamics is cooperative in that predominantly spiking neurons (η0 > 0) inter-

act via excitatory synapses (k > 0), leading to an active network. In contrast, in the far

lower left corner of these figures, predominantly resting neurons (η0 < 0) interact co-

operatively via inhibitory synapses (k < 0), and the network exhibits the quiescent PSR

state. The lower fortune-cookie-like surface marks a NF boundary between these two

regions, but one must keep in mind that the SN and AH bifurcations discussed above

occur nearby as well. Interestingly, however, the upper nose cone surface encloses an-

other region of PSR states. Within the nose cone, networks consist of predominantly

resting but excitable neurons interacting via weak excitatory synapses. In this case, the

resting states of most neurons are relatively far from their thresholds (η0 << 0), so

that weak synaptic excitation is not sufficient to cause most neurons to fire. Thus, the

network exhibits the PSR state.
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Figure 12: The node-focus (NF) surface in the three-dimensional parameter space

(η0, ∆, k) for sharpness parameter (a) n = 2 and (b) n = 9. To aid in visualization,

the figures extend into the unphysical region where ∆ < 0 (the surfaces are symmetric

across ∆ = 0). (c) is a magnification of panel a. The black line segments in a and c

represent paths in parameter space that are keyed to Figures 8c and 11c.
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It is important to note that the NF transition applies to both stable and unstable

equilibria. In the one-dimensional bifurcation diagram of Figure 8b (with ∆ = 0.08,

η0 = −0.3), the network transverses through both the lower and upper parts of the

nose cone as k increases from 0 to 2.5. The intersection with the lower, fortune cookie-

like surface occurs for a negative value of k, as indicated in Figure 8c. All these NF

transitions involve stable equilibria.

In contrast, the PSR–PSS transition in Figure 11, visible in panel b, involves an

unstable equilibrium. This transition corresponds to traversing the fortune cookie-like

surface along the horizontal line shown in Figure 12c (at ∆ = 0.5 and k = −9; same

as the horizontal lines in Figures 8 and 11). The NF transition occurs as the repeller

(unstable PSR) that was created at the nearby saddle-node bifurcation (at η0 = 5.668)

changes into an unstable spiral (unstable PSS) at η0 = 5.706. Although these unsta-

ble PSR and PSS states are unobservable in the full network, the stabilization of the

PSS state through the AH bifurcation at η0 = 10.907 requires the pre-existence of this

unstable PSS state.

6 Summary and Discussion

Using the well-known theta neuron model, we constructed a heterogeneous network

containing a mixture of at-rest but excitable neurons as well as spontaneously spiking

neurons. These were globally coupled together through pulse-like synaptic interactions

whose shape depends on a sharpness parameter n. We applied a recently-developed

reduction technique to derive a low-dimensional dynamical equation which completely
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describes the asymptotic behavior of the network’s mean field in the thermodynamic

limit of large network size. By analyzing this reduced system, we identified not only all

possible asymptotic states of the mean field, but also the bifurcations that occur as three

network parameters are varied. We also showed that the predicted behavior derived in

this way is exhibited by finite networks of 10, 000 neurons.

Of course, real neurons are not theta neurons. We caution that real Type-I neurons

can be expected to be well-approximated by theta neurons only near the onset of spik-

ing. Future work will examine the extent to which our results carry over to networks

of more realistic Type-I neurons. Nevertheless, the theta neuron model does capture

important aspects of the generic behavior of Type-I neurons, including pyramidal neu-

rons. These make up the majority of neurons in the mammalian brain (e.g., approxi-

mately 80% in the hippocampus and 70% in the cortex, across many species (Feldman,

1984; Chen & Dzakpasu, 2010)). Also, real neuronal networks are clearly not globally

coupled. But since our analysis focuses on the dynamics of the macroscopic mean field

variable defined in Equation 7, our results are best interpreted as providing an idealized

mesoscopic description of neuronal dynamics, i.e., describing the behavior of a region

of brain tissue that is small but nevertheless contains many neurons and many connec-

tions. Notable strengths of our network structure are that it includes heterogeneity in the

internal dynamics of the individual neurons (i.e., both resting and spiking neurons), and

that the coupling is via pulse-like synapses of tunable sharpness that approximate real

IPSPs without being delta functions. It is also important to note that our approach pro-

vides exact results for the asymptotic mean-field behavior, although only in the limit of

large system size. Nevertheless, we showed that the features and dynamics we derived
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are in fact exhibited by reasonably-sized finite network instantiations.

We found that the asymptotic mean field of our network exhibits only three possible

states: two corresponding to equilibrium solutions, the PSR and PSS states, and one

limit cycle solution, the CPW state. The most obvious solution is perhaps the PSR state,

in which the network consists of predominantly resting neurons that inhibit each other.

In the most extreme case, the neurons form a single stationary cluster and the mean

field assumes a constant value. However, PSR and PSS states can also be realized such

that all or a significant portion of the neuronal population spikes regularly. Despite this

spiking activity, the mean field for such partially synchronized states remains constant.

These states are similar to “asynchonous” states that have been described by others (e.g.,

Abbott & van Vreeswijk, 1993; Hansel & Mato, 2001, 2003). For example, in (Abbott

& van Vreeswijk, 1993), the asynchronous state was defined by the requirement that

the total input into one neuron from all the others be constant, and it was argued that

the existence of these states justifies the use of firing-rate models.

We have also described the subtle difference between the PSR and PSS states,

namely, that the former is a node, and the latter is a focus. The consequences of this

distinction can be observed as in Figure 5, where it is shown that the mean field re-

sponse to perturbations are markedly different. When a PSR state is perturbed, the mean

field relaxes to the equilibrium directly. In contrast, when a PSS state is perturbed, the

mean field displays decaying oscillations. In this latter case, as the equilibrium micro-

scopic configuration is approached, the neurons alternate between bouts of scattering

and clumping, or desynchronization and resynchronization, in a manner such that each

bout is less severe than the preceding one.
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Similar microscopic dynamics underlie the CPW state, except that for the CPW

state, the alternation between the de- and re-synchronizing bouts persists indefinitely.

Consequently, the asymptotic mean field approaches a limit cycle. This state is related,

but is more general than, the synchronous state that was described by Wang and Buzsáki

(Wang and Buzsáki, 1996). The latter synchronous state occurs for homogeneous (or

very weakly heterogeneous networks) when the phases of most neurons lock, as in the

partially synchronous state shown in their Figure 5C. In this state, almost all neurons

fire together. Thus the order parameter of such a network exhibits a CPW state with a

constant order parameter magnitude very close to one, and a frequency of oscillation

identical to that of an individual neuron. In contrast, the more general CPW states

that we describe in the current work are more general in that typically, the neurons

do not phase-lock. Instead, they form clusters of periodically-varying coherence, as

is quantified by the oscillating order parameter magnitude. The animation provided in

the Supplementary Information makes this point clear. It is important to note that the

frequency of oscillation exhibited by the mean field while on a CPW limit cycle is an

emergent property of the network as a whole. This frequency is therefore not related

to the frequencies of the individual neurons in a simple manner. Indeed, in parameter

space regions near the Bagdanov-Takens bifurcation, the CPW frequency can be very

small. Such low-frequency rhythms have been reported in EEG (Avella Gonzalez et al. ,

2012), and slow population activities have been observed in hippocampal slice studies

(Ho et al., , 2012).

These findings have implications for the interpretation of experimental measure-

ments of network dynamics. For example, raster diagrams are often used to identify the
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presence or absence of synchrony. Our results suggest that such diagrams may not be

sufficient to differentiate between the three macroscopic states that we have identified

here.

The reduced equation (Equation 17) also gives us the ability to fully analyze the

relevant transitions among these macroscopic states using the degree of excitability,

heterogeneity, and coupling strength (both excitatory and inhibitory) as bifurcations pa-

rameters. The results for two generic codimension-one bifurcations, the saddle-node

and Andronov-Hopf bifurcations, were summarized visually as two-dimensional sur-

faces in Figures 7 and 9 respectively. We also examined the node-focus transition sim-

ilarly (Figure 12). These results are exact only in the limit of large system size. In finite

network realizations, fluctuations can build up when the network is near a bifurcation.

Hence, the occurrence of these bifurcations can be expected to be blurred somewhat in

the parameter space. Nevertheless, we found that the bifurcations we describe here can

be reliably identified in networks of 10, 000 theta neurons. In the present work, we did

not investigate smaller networks.

By examining these bifurcation surfaces, we found that the dynamical interplay be-

tween the internal neuronal dynamics, as parameterized by η0, and the inter-neuronal

coupling, parameterized by k, appears to play an important role in determining the com-

plexity of the possible macroscopic mean field dynamics of the network. In particular,

when the network is preferentially cooperative, such that η0 and k are of the same sign,

the network tends to settle into one of the macroscopic equilibrium states. In contrast,

when η0 and k are of opposite sign, richer dynamics are seen, including the CPW state,

bifurcations of the macroscopic mean field, and multistability.
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Finally, we note that the results we reported were for two specific values of the

sharpness parameter, namely, n = 2 and n = 9. Further analysis of the effect of in-

creasing this parameter shows no qualitative change in our results. Specifically, we

found no changes to the three classes of macroscopic states, and no significant qualita-

tive changes to the bifurcation surfaces, for values of n up to n = 15. While we suspect

that there may be important differences that arise as n → ∞, we note that low val-

ues of the sharpness parameter are actually better approximations of real post-synaptic

potentials.

Our results provide general predictions for the macroscopic dynamics of an ideal-

ized large network of Type-I neurons. In a related study (So et al., 2013), a similar

but non-autonomous theta neuron network in which η0 was made to oscillate in time

was investigated. Varying this parameter such that the SNIC bifurcation is repeatedly

traversed is a common method of modeling bursting neurons, specifically parabolic

bursters. That paper builds on the results reported here, and shows that more compli-

cated behavior including macroscopic quasiperiodicity, chaos, multistability, and final-

state uncertainty can occur in the non-autonomous case.

Future work will extend our results to include separate and different interacting pop-

ulations of neurons, including Type-II neurons, in order to model the excitatory/inhibitory

and layered structure of the brain’s neuronal networks.
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