11

CONTROLLING CHAOS
IN MECHANICAL
SYSTEMS

ERNEST BARRETO, YING-CHENG LAI,
and CELSO GREBOGI

11.1 INTRODUCTION

The control of chaos by unstable periodic orbits embedded in a chaotic attractor was first proposed in 1990 (Ott, Grebogi, and Yorke, 1990). Numerous experiments in many different fields have demonstrated the feasibility of this approach. This technique has been applied for example to mechanical systems (Ditto, Rauseo, and Spano, 1990; Hüberger et al., 1994; Starrett and Tago, 1994; Moon, Johnson, and Holmes, 1996), lasers (Roy et al., 1992; Gida et al., 1992; Biehlowski et al., 1993, 1994; Rey et al., 1993; Mouëci et al., 1994), circuits (Hunt, 1991; Johnson and Hunt, 1993; Gauthier et al., 1994), chemical reactions (Petrov et al., 1993, 1994), biological systems (Schild et al., 1994; Garfinkel et al., 1992), communication technology (Hayes, Grebogi, and Ott, 1993; Hayes et al., 1994), and energy production methods (Rhodes et al., 1995; Dow et al., 1995). Furthermore it is possible to switch efficiently from one unstable periodic orbit to another at will (Ditto, Raupe, and Spano, 1990; Romeiras et al., 1992; Kotliach et al., 1993; Barreto et al., 1995a). The basic idea is as follows: First, one chooses an unstable periodic orbit embedded in an attractor that yields the best system performance according to some criteria. Second one allows the trajectory to enter a small region around the desired
11.2 A ONE-DIMENSIONAL EXAMPLE

The basic idea behind controlling chaos can be understood by considering a simple model system. We consider one of the best understood chaotic systems, the simple one-dimensional logistic map,

$$x_{n+1} = f(x_n, \lambda) = \lambda x_n(1 - x_n),$$

(1)

where x is restricted to the unit interval $[0,1]$ and λ is a control parameter. It is known that this map develops chaos via the period-doubling bifurcation route (Feigenbaum, 1978). For $0 < \lambda < 1$, the asymptotic state of the map (or the attractor of the map) is $x = 0$; for $1 < \lambda < 3$, the attractor is a nonzero fixed point $x_F = 1 - 1/\lambda$; for $3 < \lambda < 1 + \sqrt{6}$, this fixed point is unstable and the attractor is a stable period-2 orbit. As λ is increased further, a sequence of period-doubling bifurcations occurs in which successive period-doubled orbits become stable. The period-doubling cascade accumulates at $\lambda = \lambda_c \approx 3.57$, after which chaos arises.

Consider the case $\lambda = 3.8$ shown in Figure 11.1a where the system is apparently chaotic. An important characteristic of a chaotic attractor is that there exists an infinite number of unstable periodic orbits embedded within it. Shown in the figure are, for example, a fixed point $x_F \approx 0.7368$ and a period-2 orbit with components $x(1) \approx 0.3757$ and $x(2) \approx 0.8894$, where $x(1) = f(x(2))$ and $x(2) = f(x(1))$.

Suppose that we want to avoid chaos at $\lambda = 3.8$. In particular, we want trajectories resulting from a randomly chosen initial condition x_0 to be as close as possible to the period-2 orbit shown in Figure 11.1a, assuming that this

 Period-2 orbit gives the best system desired asymptotic state of the map periodic orbits. Suppose further the small range around the value $x_0 = 0.7368$.

$$[x_0 - \delta, x_0 + \delta], \text{ where } \delta \ll 1.$$ Due to trajectory that begins from an arbitrate one, into the neighborhood of the Because of the nature of chaos, the period-2 orbit if we do not intervene the control parameter so that the t
A ONE-DIMENSIONAL EXAMPLE

FIGURE 11.1. (a) The logistic map \(x_{n+1} = \lambda x_n (1 - x_n) \). An unstable fixed point and an unstable period-2 orbit are also shown. (b) Time series illustrating the control of the period-2 orbit at the fixed point. The chaotic trajectory begins from \(x_0 = 0.28 \). At \(\epsilon = 0.81 \), the trajectory falls in an \(\epsilon \)-neighborhood of the period-2 orbit, after which the parameter control is turned on to stabilize the trajectory around the period-2 orbit. At \(\epsilon = 2.209 \), the control is turned off. At \(\epsilon = 2.777 \), the chaotic trajectory comes close to the fixed point and is controlled in subsequent iterations. We choose \(\epsilon = 10^{-4} \). The maximum allowed parameter perturbation is \(\delta = 5 \times 10^{-3} \).

The period-2 orbit gives the best system performance. Of course we can choose the desired asymptotic state of the map to be any of the infinite number of unstable periodic orbits. Suppose further that the parameter \(\lambda \) can be fine-tuned in a small range around the average \(x_0 = 3.8 \), namely, we allow \(\lambda \) to vary in the range \([\lambda_0 - \delta, \lambda_0 + \delta] \), where \(\delta = 0.1 \). Due to the nature of the chaotic attractor, a trajectory that begins from an arbitrary value of \(x_0 \) will fall, with probability one, into the neighborhood of the desired period-2 orbit at some later time. Because of the nature of chaos, the trajectory would diverge quickly from the period-2 orbit if we do not intervene. Our task is to program the variation of the control parameter so that the trajectory stays in the neighborhood of the
period-2 orbit as long as the control is present. In general, the small parameter perturbations will be time dependent. We emphasize that it is important to apply only small parameter perturbations. If large parameter perturbations are allowed, then obviously we can eliminate chaos by varying \(\lambda \) from 3.8 to 2.0, for example. Such a large change is not interesting.

The logistic map in the neighborhood of a periodic orbit can be approximated by a linear equation expanded around the periodic orbit. Denote the target period-2 orbit to be controlled as \(x(t), i = 1, \ldots, m \), where \(x(t + 2) = f(x(t)) \) and \(x(0 + i) = x(i) \). Assume that at time \(n \) the trajectory falls into the neighborhood of component \(i \) of the period-2 orbit. The linearized dynamics in the neighborhood of component \(i + 1 \) is then

\[
x_{i+1} = x(t - 1) - \frac{dy}{dx_i} [x_n - x(t)] + \frac{df}{dx_i} \Delta x_i
\]

\[
= \lambda x(t - 1) x_n - x(t) + x(t) (1 - x(t)) \delta x_i
\]

where the partial derivatives in (2) are evaluated at \(x = x(t) \) and \(\lambda = \lambda_0 \). We require \(x_{i+1} \) to stay in the neighborhood of \(x(t + 1) \). Hence we set \(x_{i+1} = x(t + 1) \), which gives

\[
\Delta x_i = \frac{\lambda [2x(t) - 1] x_n - x(t)}{x(t) (1 - x(t))}
\]

Equation (3) holds only when the trajectory \(x_n \) enters a small neighborhood of the period-2 orbit, namely when \(|x_n - x(t)| < \delta \); hence the required parameter perturbation \(\Delta x_i \) is small. Let the length of a small interval defining the neighborhood around each component of the period-2 orbit be \(2 \varepsilon \). In general, the required maximum parameter perturbation \(\delta \) is proportional to \(\varepsilon \). Since \(\varepsilon \) can be chosen to be arbitrarily small, \(\delta \) also can be made arbitrarily small. As we will see, the transient time before a trajectory enters the neighborhood of the target periodic orbit depends on \(\varepsilon \) (or \(\delta \)). When the trajectory is outside the neighborhood of the target periodic orbit, we do not apply any parameter perturbation, and the system evolves at its nominal parameter value \(\lambda_0 \). Hence we usually set \(\Delta x_i = 0 \) when \(\Delta x_i > \delta \). Note that the parameter perturbation \(\Delta x_i \) depends on \(x_n \) and is time dependent.

The above strategy for controlling the orbit is very flexible for stabilizing different periodic orbits at different times. Suppose that we first stabilize a chaotic trajectory around the period-2 orbit shown in Figure 11.1a. Then we might wish to stabilize the fixed point in Figure 11.1a, assuming that the fixed point would correspond to a better system performance at a later time. To achieve this change of control, we simply turn off the parameter perturbation with respect to the period-2 orbit. Without control, the trajectory will diverge from the period-2 orbit exponentially. We let the system evolve at the parameter value \(\lambda_0 \). Due to the nature of chaos, there comes a time when the chaotic trajectory enters a small neighborhood on a new set of parameter perturbation point. The trajectory can then be...
A ONE-DIMENSIONAL EXAMPLE

trajectory enters a small neighborhood of the fixed point. At this time we turn on a new set of parameter perturbations calculated with respect to the fixed point. The trajectory can now be stabilized around the fixed point.

Figure 11.1b shows an example where we first control the period-2 orbit and then the fixed point shown in Figure 11.1a. The initial condition is \(x_0 = 0.28 \). At time \(n = 381 \), the trajectory enters the neighborhood of component \(x(1) \) of the period-2 orbit. For subsequent iterations the parameter control calculated from (3) is used to stabilize the trajectory around the period-2 orbit. At time \(n = 2200 \), we close to stabilize the trajectory around the fixed point, and hence we turn off the parameter perturbation. The trajectory quickly leaves the period-2 orbit and becomes chaotic. At time \(n = 2757 \), the trajectory falls into the neighborhood of the fixed point. Parameter perturbations calculated with respect to the fixed point are then turned on to stabilize the trajectory around the fixed point.

In the presence of external noise, a controlled trajectory will occasionally be "kicked" out of the neighborhood of the periodic orbit. If this behavior occurs, we turn off the parameter perturbation and let the system evolve by itself. With probability one the chaotic trajectory will enter the neighborhood of the target periodic orbit and be controlled again. This situation is illustrated in Figure 11.2a where we control the period-2 orbit. The noise is modeled by an additive term in the logistic map of the form \(\eta \), where \(\eta \) is a Gaussian distributed random variable with zero mean and \(\sigma \), standard deviation, and \(\eta \) is the noise amplitude. The effect of the noise is to turn a controlled periodic trajectory into an intermittent one in which chaotic phases (uncontrolled trajectories) are interspersed with laminar phases (controlled periodic trajectories). It is easy to verify that the averaged length of the laminar phase increases as the noise amplitude decreases, and the length tends to infinity as \(\eta \to 0 \).

Let us consider how many iterations are required on average for a chaotic trajectory originating from an arbitrarily chosen initial condition to enter the neighborhood of the target periodic orbit. Clearly the smaller the value of \(\eta \), the more iterations are required. In general, the average transient time \(T(\eta) \) before turning on control scales with \(\eta \) as

\[T(\eta) \sim \eta^{-1}. \]

where \(\gamma > 0 \) is a scaling constant. For one-dimensional maps such as the logistic map, there usually exists a smooth probability density \(p(x) \) for trajectory points on the attractor. The probability density \(p \) can be defined as the frequency that a chaotic trajectory visits a small neighborhood of the point \(x \) on the attractor. In such a case we have \(\gamma = 1 \), as can be seen by the following argument: The probability that a trajectory enters the neighborhood of a particular component (component i) of the periodic orbit is given by

\[P(i) = \int_{x(i)}^{x(i + 1)} p(x) dx \approx 2 \pi p(x(i)). \]
Hence \(t(\varepsilon) = 1/p(\varepsilon) \sim \varepsilon^{-1} \), and therefore \(\gamma = 1 \). This behavior is illustrated in Figure 11.2b, where \(t(\varepsilon) \) is plotted on a logarithmic scale for the case of stabilizing the period-2 orbit in Figure 11.1a. Twenty values of \(\varepsilon \) were chosen in the range \([10^{-8}, 10^{-7}]\). For each \(\varepsilon \) we randomly choose 2000 initial conditions (with a uniform probability distribution) and calculate an average transient time. The slope of the straight line is approximately \(-1.02\), indicating good agreement with the theoretical prediction of \(\gamma = 1 \). For higher-dimensional chaotic systems, the exponent \(\gamma \) can be related to the eigenvalues of the target periodic orbit (Ott, Grebogi, and Yorke, 1989).

A major advantage of the controlling chaos idea is that it can be applied to experimental systems in which a priori knowledge of the system is usually not.

11.3 CONTROLLING HIGHER-DIMENSIONAL SYSTEMS

A time series found by m variables in conjunction with the.Casdagli, Yorke, 1991; Ott, 1993) into a trajectory in phase space. It is periodic orbits to be controlled and p parameter perturbations (Ditto, Ruelle, 1992; Drossel and Reichenbach, 1992; So general method is its flexibility in choosing \(\varepsilon \). The method has attracted growing interest and has been extended to higher-dimensional systems (Auerbach et al., 1991; Han et al., 1991c), the control of transient chaos (Tel, and Grebogi, 1993c) and the sy Grebogi, 1993, 1994b). It also has physical experiments (Ditto, Rauh:). In Section 11.3 we will describe the maps.

\(X_{t+1} \)

where \(X_t \in \mathbb{R}^d \). \(F \) is a smooth function externally accessible control parameters to be small, namely

\[|p^i - p^i(\varepsilon) < \epsilon \]

where \(p^i \) is some nominal parameter variation. We wish to perturb the trajectory so that it enters an periodic orbit. Let the desired period-2 orbit \((X_1, p_0) \rightarrow (X_2, p_1) \rightarrow (X_3, p_2) \rightarrow \ldots \) be a periodic orbit of component 1 + 1 of the period:

\[X_{t+1} = X(t + 1, p_1) \]
CONTROLLING HIGHER-DIMENSIONAL SYSTEMS

known. A time series found by measuring one of the system's dynamical variables in conjunction with the time delay embedding method (Sauer, Casdagli, and Yuille, 1991; Ott, 1993), which transforms a scalar time series into a trajectory in phase space, is sufficient to determine the desired unstable periodic orbits to be controlled and the relevant quantities required to compute parameter perturbations (Ditto, Rauseo, and Spano, 1990). Garfinkel et al. (1992), Dressler and Nitsch, 1992; Le and Ott, 1993). Another advantage of the method is its flexibility in choosing the desired periodic orbit to be controlled. The method has attracted growing interest in controlling dynamical systems and has been extended to higher-dimensional dynamical systems (Romera et al., 1992; Auerbach et al., 1992), Hamiltonian systems (Lai, Ding, and Grebogi, 1993a), the control of transient chaos (Tel, 1991) and chaotic scattering (Lai, Tel, and Grebogi, 1993c) and the synchronization of chaotic systems (Lai and Grebogi, 1993, 1994b). It also has been successfully implemented in various physical experiments (Ditto, Rauseo, and Spano, 1990; Garfinkel et al., 1992).

In Section 11.3 we will describe the method formulated for two-dimensional maps.

11.3 CONTROLLING HIGHER-DIMENSIONAL SYSTEMS

The general algorithm for controlling chaos in higher-dimensional maps (or autonomous flows that can be reduced to maps on a Poincaré surface of section) can be formulated as follows. (By autonomous flow we mean that the vector field does not contain an explicit time dependence.) Consider the d-dimensional map,

$$X_{i+1} = F(X_i, p)$$

where $X_i \in \mathbb{R}^d$, F is a smooth function of its variables, and $p \in \mathbb{R}^r$ is a vector of r externally accessible control parameters. We restrict the parameter perturbations to be small, namely

$$|p_i - p_i^0| < \delta_i, \quad i = 1, \ldots, r$$

where p_0 is some nominal parameter value and $\delta_i \ll 1$ defines the range of parameter variation. We wish to program the parameters p so that a chaotic trajectory is stabilized when it enters an ϵ neighborhood of the target periodic orbit. Let the desired periodic orbit be $X(1, p_0) \rightarrow X(2, p_0) \rightarrow \cdots \rightarrow X(m, p_0) \rightarrow X(m + 1, p_0) = X(1, p_0)$. The linearized dynamics in the neighborhood of component $i + 1$ of the periodic orbit is

$$X_{i+1} - X(i, p_0) = A \cdot [X_i - X(i, p_0)] + Bp_i.$$
CONTROLLING CHAOS IN MECHANICAL SYSTEMS

where \(\Delta p_i = p_i - p_0 \), \(A \) is a \(d \times d \) Jacobian matrix, and \(B \) is a \(d \times r \) matrix:

\[
A = D_F(X, p) \|_{p_0, X_0}, \\
B = D_F(X, p) \|_{p_0, X_0, p_0}.
\]

Now writing \(\Delta p_i = -K [X_i - X(U_i, p_0)] \), we have

\[
X_{i+1} = X(U_i + 1, p_0) = [A - BK] [X_i - X(U_i, p_0)].
\]

For a controllable system, standard techniques allow us to find a matrix \(K \) such that \([A - BK] \) has any desired eigenvalues. (The controllability condition and the construction of the matrix \(K \) are described in Barretto and Grebogi, 1955b, and Ogata, 1987.) By selecting eigenvalues of magnitude less than one, \(X_i - X(U_i, p_0) \) approaches zero.

The formulation above assumes that the complete state of the system \(X \) is known at any map iteration. In practice, this is unrealistic. The method can, however, be implemented by measuring a single scalar time series via the embedding technique (Sauer, Casdagli, and Yorke, 1991; Ott, 1992). We refer the interested reader to Ditto, Kauro, and Spano (1990) and Garkinkel et al., (1992) for further information.

We now emphasize the geometrical aspects of the higher-dimensional algorithm by discussing the two-dimensional case. (We further simplify the discussion by assuming only one control parameter.) A key aspect of higher-dimensional maps is that there exist both stable and unstable directions at each component of an unstable periodic orbit. The stable (unstable) directions are directions along which points approach (leave) the periodic orbit exponentially. The existence of this structure at each point of the trajectory can be seen for the two-dimensional case as follows: Choose a small circle of radius \(r \) around an orbit point \(X(0) \). This circle can be written as \(dx^2 + dy^2 = r^2 \) in the Cartesian coordinate system whose origin is at \(X(0) \). The coefficients \(A, B, \) and \(C \) are functions of elements of the inverse Jacobian matrix at \(X(0) \). This deformation from a circle to an ellipse means that the distance along the major axis of the ellipse at \(X(i - 1) \) contracts as a result of the map. Similarly the image of a circle at \(X(i - 1) \) under \(F \) is typically an ellipse at \(X(0) \), which means that the distance along the inverse major axis of the ellipse at \(X(i) \) expands under \(F \). Thus the major axis of the ellipse at \(X(i - 1) \) and the inverse image of the major axis of the ellipse at \(X(0) \) approximate the stable and unstable directions at \(X(U_i - 1) \). We note that typically the stable and unstable directions are not orthogonal to each other, and in rare situations they can be identical (Lai et al., 1993b) (nonhyperbolic dynamical systems).

To calculate these stable and unstable direction, we use an algorithm developed in Lai et al., 1993b. This algorithm can be applied to cases where

the period of the orbit is arbitrary \(l \). We first iterate this point forward trajectory \(F^j(X), F^j(X), \ldots, F^j(X) \), arbitrarily small radius \(\varepsilon \) at the point \(X \). When we iterate the ellipse very thin with its major axis along sufficiently large. For a short period integer. In practice, instead of using point \(F^j(X) \), since the Jacobian matrix in the tangent space of \(F \) toward the vector backward to the point \(X \) by inverse map at each point on the \(A \) after each multiplication to unit length so obtained at \(X \) is a good approximation.

Similarly, to find the unstable backward under the inverse map \(\nu \) with \(j = 1, 2, \ldots, l \). Then we choose this unit vector forward to the pos multiplying by the Jacobian matrix Jacobian matrix of the forward \(m \) direction.) We rescale the vector to point \(X \) is a good approximation \(X \) is sufficiently large.

The method above is efficient for and real stable or unstable directions for chaotic trajectories in the Henon Let \(\epsilon_{x_0} \) and \(\epsilon_{y_0} \) be the stable and \(\epsilon_{x_0} \) be the corresponding contra- \(l_{x_0}, \epsilon_{y_0} \) be the so that the next iteration of \(\epsilon \) neighborhood about \(X(t) \) fall along

\[
X_{i+1} = X(U_i).
\]

If we take the dot product of both obtain the expression for the param

\[
\Delta p_i = [A - X(U_i)] X(U_i).
\]

The general algorithm for contro
the period of the orbit is arbitrarily large. To find the stable direction at a point X, we first iterate this point forward N times under the map F and obtain the trajectory $F(X), F^2(X), \ldots, F^N(X)$. Now imagine that we place a circle of arbitrarily small radius at the point $F^N(X)$. If we iterate this circle backward once, the circle will become an ellipse at the point $F^{N-1}(X)$, with the major axis along the stable direction of the point $F^{N-1}(X)$. We continue iterating the ellipse backward, while at the same time recalling the ellipse's major axis to be order e. When we iterate the ellipse back to the point X, the ellipse becomes very thin, with its major axis along the stable direction at the point X, if N is sufficiently large. For a short period-m orbit, we choose $N=\text{int}(\frac{m}{k})$ an integer. In practice, instead of using a small circle, we take a unit vector at the point $F^N(X)$, since the Jacobian matrix of the inverse map F^{-1} rotates a vector in the tangent space of F toward the stable direction. Hence we iterate a unit vector backward to the point X by multiplying by the Jacobian matrix of the inverse map at each point on the already existing orbit. We rescale the vector after each multiplication to unit length. For sufficiently large N, the unit vector e_0 obtained at X is a good approximation to the stable direction at X.

Similarly, to find the unstable direction at X, we first iterate X backward under the inverse map N times so as to obtain a backward orbit $F^{-1}(X)$ with $j=N, \ldots, 1$. Then we choose a unit vector at point $F^{J-1}(X)$ and iterate this unit vector forward to the point X along the already existing orbit by multiplying by the Jacobian matrix of the map N times. (Recall that the Jacobian matrix of the forward map rotates a vector toward the unstable direction.) We rescale the vector to unit length at each step. The final vector at point X is a good approximation to the unstable direction at that point if N is sufficiently large.

The method above is efficient. For instance, the error between the calculated and real stable or unstable directions (Lai et al., 1993b) is on the order of 10^{-10} for chaotic trajectories in the Hénon map if $N=20$.

Let e_u and e_s be the stable and unstable directions at X_0, and let L_u and L_s be the corresponding contravariant vectors that satisfy the conditions $L_u e_u = 1$, $L_u e_s = 0$ and $L_s e_u = 0$, $L_s e_s = 1$. To stabilize the orbit, we require that the next iteration of a trajectory point, after falling into a small neighborhood about X_0, fall along the stable direction at $X_0 + l_u p_0$, namely

$$\Delta p_x = \left[A \cdot (X_0 - X_u) - l_u p_u \right] - l_u e_u = 0.$$ (11)

If we take the dot product of both sides of (8) with $L_s e_u$, and use (10), we obtain the expression for the parameter perturbations:

$$\Delta p_x = \left[A \cdot (X_0 - X_u) - l_u p_u \right] - l_u e_u = 0.$$ (12)

The general algorithm for controlling chaos for two-dimensional maps can be applied to cases where
be summarized as follows:

1. Find the desired unstable periodic orbit to be stabilized.
2. Find a set of stable and unstable directions, \(e_i \) and \(e_u \), at each component of the periodic orbit. The set of corresponding contravariant vectors \(f_i \) and \(f_u \) can be found by solving \(e_i \cdot f_i = e_u \cdot f_u = 1 \) and \(e_i \cdot f_u = e_u \cdot f_i = 0 \).
3. Randomly choose an initial condition, and evolve the system at the parameter value \(p_0 \). When the trajectory enters the \(\epsilon \)-neighborhood of the target periodic orbit, calculate parameter perturbations at each time step according to (12).

The OGY algorithm described above, when generalized to permit the use of more than one control parameter (Barreto and Grebogi, 1995b), allows greater efficiency in both achieving control and maintaining control in the presence of noise. Furthermore, the algorithm is not restricted to the control of unstable periodic orbits. It can be applied to stabilizing chaotic trajectories to synchronize two chaotic systems (Lai and Grebogi, 1993, 1994b) or to convert transient chaos into sustained chaos (Lai and Grebogi, 1994a).

It should be noted that the algorithm discussed above applies to invertible maps. In general, dynamical systems that can be described by a set of first-order autonomous differential equations are invertible, and the inverse system is obtained by letting \(t \rightarrow -t \) in the original set of differential equations. Hence, the discrete map obtained on the Poincaré surface of section also is invertible. Most dynamical systems encountered in practice fall into this category. Noninvertible dynamical systems possess very distinct properties from invertible dynamical systems (Chossat and Golubitsky, 1988; Chinn, Kan, and Grebogi, 1993). For instance, for two-dimensional noninvertible maps a point on a chaotic attractor may not have a unique stable (unstable) direction. A method for determining all these stable and unstable directions is not known. If one or several such directions at the target unstable periodic orbit can be calculated, the OGY method can in principle be applied to noninvertible systems by forcing a chaotic trajectory to fall on one of the stable directions of the periodic orbit.

11.4 TARGETING AND CHAOS CONTROL IN A MECHANICAL SYSTEM

We have seen that the OGY algorithm assumes that the control perturbations are limited to be small, and hence the algorithm is based on a linearization of the dynamics in the immediate vicinity of the unstable orbit that is to be stabilized. As described above, it is possible to rely on the natural ergodicity of chaos to bring the trajectory into this small region before applying the control. However, in the case of even moderately high-dimensional systems, the

TARGETING AND CHAOS CONTROL IN A SYSTEM

chaotic transients that occur before prohibitively long.

If a reasonable global model of possible to employ a targeting me times. (If a global model is not ava using several simultaneous contro 1995b.) Targeting refers to global method by which a chaotic orbit is attractor. Several such methods ha 1992a, 1992b, 1993; Bollt and Meiss method that is computationally effi stichel et al., 1987). When coupled i targeting allows for faster and more
To demonstrate the advantages (rotor system shown in Figure 11.3) connected rods subject to period sampled immediately after each i (Romeiras et al., 1992; Grebogi et

![Figure 11.3](image-url)
chaotic transients that occur before the control can be applied may be prohibitively long.

If a reasonable global model of the system of interest is available, it is possible to employ a targeting method to effectively reduce these transient times. (If a global model is not available, similar results may be obtained by using several simultaneous control parameters; see Barreto and Grebogi, 1995.) Targeting refers to global, nonlocal control of chaos; specifically it is a method by which a chaotic orbit can be rapidly steered to a desired part of the attractor. Several such methods have been proposed (Shinbrot et al., 1990, 1992a, 1992b, 1993; Bollt and Meiss, 1995). We describe here a tree-targeting method that is computationally efficient for higher-dimensional systems (Kostelich et al., 1987). When coupled with the OGY algorithm described above, targeting allows for faster and more efficient stabilization.

To demonstrate the advantages of this method, we use the kicked double-rotor system shown in Figure 11.3. This is an idealized physical system of two connected rods subject to periodic impulsive kicks. The time evolution, sampled immediately after each kick, is given by a four-dimensional map (Romeiras et al., 1992; Grebogi et al., 1986, 1987). We take our control

\[
\begin{align*}
\dot{\theta}_1 &= (\theta_1 \sin \theta_2) \frac{\omega}{2} \\
\dot{\theta}_2 &= (\theta_2 \sin \theta_1) \frac{\omega}{2} \\
\dot{\phi} &= \frac{\omega}{2} \\
\end{align*}
\]

FIGURE 11.3. The kicked double rotor. A massless rod of length \(l\), pivots about the stationary point \(P_1\). A second massless rod of length \(2l\) is mounted on pivot \(P_2\), which in turn is mounted at the end of the first rod. Periodic impulsive kicks \(f(t) = \sum_{n} \rho_n \delta(t - n)\) are applied at an angle \(\phi\) as shown. The state of the system immediately after the \(n + 1\)th kick is given by a four-dimensional map of the form \(\mathbf{X}_{n+1} = M \mathbf{X}_n + \mathbf{E}_n\), where \(\mathbf{X}_n = (\theta_1, x_1, \dot{x}_1, \dot{\theta}_1)\) are the two angular position coordinates, \(Y = (\theta_2, x_2, \dot{x}_2, \dot{\theta}_2)\) are the corresponding angular velocities, and \(G(X)\) is a nonlinear function. \(M\) and \(E\) are both constant matrices that involve the coefficients of friction at the two pivots and the moments of inertia of the rotor. Gravity is absent. Control parameters at time \(n\) are \(\rho_n = 9.0 + \delta\rho_n\) and \(\delta\theta_n = 0.0 + \delta\phi_n\). We take \(l = 1/\sqrt{2}\) and set all other parameters to 1. (For further details, see Romeiras et al., 1992; Grebogi et al., 1986, 1987.)

TARGETING AND CHAOS CONTROL IN A MECHANICAL SYSTEM

CONTRO IN A MECHANICAL SYSTEM
parameters to be the strength of the kick p and the angle ϕ at which the kick is applied. Small perturbations ($|\Delta p|/p_0 \leq 0.1; |\Delta \phi|/\phi_0 \leq 0.5$) are applied around nominal values ($p_0 = 9.0, \phi_0 = 0$) at which the map exhibits 76 fixed points within a chaotic attractor of Lyapunov dimension 2.8 (see the figure caption for further details). This dimension is to be contrasted with most experiments and numerical studies where the dimension was typically between one and two, and often close to one. Figure 11.4 illustrates the advantages of targeting. We seek to stabilize a sequence of five fixed points in succession. The figure displays the θ_1 component of the state versus iteration number. In Figure 11.4a we rely on ergodicity to bring the orbit close to the desired fixed point before it is stabilized. In Figure 11.4c our tree-targeting method is used. Very large improvements in the switching time is evident: note the great difference in the scales on the two horizontal axes. More precisely, in panel (a) the switching

![Figure 11.4](image)

FIGURE 11.4. Graphs illustrating switching between five different fixed points. The θ_1 coordinate of the state is plotted against iterations. (a) We rely on ergodicity to bring the orbit close to the desired UPO. The fifth fixed point required 153,485 iterations to be stabilized and is not shown. (b) Tree targeting is employed to significantly reduce transients that prevent stabilization.

TARGETING AND CHAOS CONTROL IN...
times \tau follow an exponential distribution \(\tau \sim \text{exp}(\nu) \) (this is typical of chaotic systems (Ott, 1993)), and we find that \(\tau \) ranges from \(12,000 \pm 80 \) iterations to 252,000 \(\pm 3000 \) iterations, depending on the fixed point. In sharp contrast, the method outlined below permits the target to be attained in 17–19 iterations using one parameter targeting (\(\rho \)) and 13–15 iterations using two parameter targeting (\(\rho \) and \(\phi \)). Thus we achieve improvements of 3–4 orders of magnitude in the switching times.

The first step in the tree-targeting procedure is to identify the set of unstable periodic orbits that are to be stabilized. For simplicity, we take these to be fixed points, namely periodic orbits of period one. We denote these by \(p_1, p_2, \ldots, p_i \). For each such point we construct \textit{targeting trees}, which function as "roadmaps" of the attractor. To stabilize \(p_i \), a chaotic orbit is directed along the corresponding tree into the vicinity of \(p_i \). The OCY method is then applied to stabilize the orbit. To switch to \(p_{i+1} \), we can abandon \(p_i \), follow the tree leading to \(p_{i+1} \), and subsequently stabilize the orbit there.

Each targeting tree is constructed by first choosing the target, say, the fixed point \(p_i \). The map is then iterated from a random initial condition while keeping in memory a short history of the iterates encountered (e.g., 10 consecutive points) until the orbit lands within a tolerance distance of the target. This point, together with the recorded pre-iterates, comprise the \textit{trunk path} of the tree and are stored in memory. The map is then iterated again, still keeping track of a brief iterate history until the orbit lands near any one of the points already in the tree. When this happens, we add the new path as a \textit{branch}. Continuing in this way, we build a tree with a hierarchy of branches: The trunk path is level 1, level 2 branches are those that are rooted at some point in the trunk path, level 3 branches are rooted at a level 2 branch, and so on. The objective is to build a tree with enough branches such that a typical uncontrolled chaotic orbit lands near a point in the tree after a small number of iterations.

The basic targeting procedure is illustrated in Figure 11.5. Assume that a target point \(t = x_{10} \) on the attractor has been selected, and that the trunk path consisting of points \(x_n, x_{n+1}, \ldots, x_{10} \) has been recorded. Let \(x_{10} \) be a point near \(x_{10} \). Without targeting, the orbit \(y_1, y_2, \ldots \) quickly diverges from the path. We seek a series of small perturbations to available control parameters such that the perturbed orbit \(y_1, y_2, \ldots, \) lands on the stable manifold of a subsequent point \(x_\alpha \) in the path. If this can be accomplished for a small value of \(\alpha \), then the orbit will quickly approach the path, and \(y_{10} \) will be very close to the target \(x_{10} \).

For specificity, we refer to the case of the kicked double rotor (Figure 11.3, i.e., a four-dimensional map \(F \) with two positive and two negative Lyapunov exponents). Let \(S_2 \) represent the (typically two-dimensional) stable manifold associated with the point \(x_\alpha \). For simplicity we assume that only one parameter \(\rho \) is available for control. Recall that two two-planes generically intersect at a single point in \(\Phi \). Hence the vectors \(\xi_1 = \partial \Phi(x_\alpha, \rho, \nu, \lambda) / \partial \nu \) and \(\xi_2 = \partial \Phi(x_\alpha, \rho, \nu, \lambda) / \partial \lambda \) typically span a two-plane through \(y_1 \) that intersects the two-dimensional stable manifold \(S_2 \) at a unique point \(y_2 \). Therefore we look
for two successive parameter perturbations \(\rho_1 \) and \(\rho_2 \) such that \(S^1 \) lies on \(S_2 \).

The intersection point \(S^2 \) may not be sufficiently close to \(x_1 \) to justify using the linear approximation for estimating \(\delta_2 \). This is generally the case in our kicked double-rotor example. Alternatively, we can estimate the intersection point on \(S_2 \) by calculating the inverse images of points near subsequent points further down the path. Let \(s_1 \) and \(s_2 \) denote vectors that span a plane at \(x_2 \). A point \(x = x_2 + \sigma_1 s_1 + \sigma_2 s_2 \) is chosen with \(\sigma_1 \) and \(\sigma_2 \) small (typically of order \(10^{-4} \)). The inverse images \(F^{-1}(x) \), \(F^{-2}(x) \), \ldots rapidly approach the stable manifolds \(S_2 \), \(S_3 \), \ldots because, under the inverse map, \(S_2 \) is an expanding set and components perpendicular to \(S_2 \) contract.

Thus in the case of one parameter control, we calculate two parameter perturbations \(\rho_1 \) and \(\rho_2 \) together with values for \(\sigma_1 \) and \(\sigma_2 \), such that

\[
F^{-h}(x_{k-2} + \sigma_1 s_1 + \sigma_2 s_2) = \mathbf{F}(y_{k}, \rho_1, \rho_2) = \hat{y}_2.
\]

(13)

In our example, we use \(h = 6 \). Equation (13) can be solved numerically using Newton's method. Once the prescribed kicks \(\rho_1 \) and \(\rho_2 \) are applied at \(y_2 \) and \(\hat{y}_2 \), the orbit lands on the stable manifold of \(x_2 \) (at \(\hat{y}_2 \)), and subsequent iterations of the map approach the path exponentially.

In practice, values of \(h \) which yield numerically accurate results can be determined by performing numerical trials on the particular map being considered. To correct for these and other nonideal effects such as noise, state measurement error, and an imperfect determination of the system parameters, the method is reapplied at every iteration.

If two parameters \(\rho \) and \(\phi \) are available for control, then only one perturbation step is necessary. Typically there is a two-plane through \(y_1 \),

\[\begin{align*}
\bullet \ y_2 \\
\bullet \ \hat{y}_2 \\
\bullet \ y_1 \\
\bullet \ \hat{y}_1 \\
\bullet \ y_0 \\
\bullet \ \hat{y}_0 \\
x_{10} \\
x_5 \\
\ldots \\
x_1 \\
x_2 \\
x_0
\end{align*} \]

Figure 11.5. Schematic of a targeting procedure. Two successive perturbations of the kick are applied at \(y_2 \) to steer it onto the stable manifold associated with the point \(x_2 \).

REFERENCES

spanned by \(\mathbf{g}_k = \mathbf{F}(y_{k}, \rho, \phi) \) and \(\mathbf{g}_0 \) an stable manifold \(S_0 \) of \(x_0 \). The path extended to different dimensions an exponents.

Assume now that a three-level tar can be iterated until the trajectory is suppose that \(x \) is in a level 3 brane interm target, and the orbit is direct. Next we set the interm target to \(b \), The orbit is steered to this new tar final target is attained. The orbit applying the OGY control proceeds.

In the procedure described above uncontrolled orbit encounters the cloud of points by calculating the if perturbation (applied to \(\phi \) and \(\rho \)) the cloud are within one iteration \(\epsilon \) forward a certain number of time encounters the tree, its position is \(i \) from the initial condition \(z \) onto the select the path that ultimately rec iterations.

11.5 CONCLUSIONS

In summary, we have presented periodic motion by using only am takes advantage of chaos and thus is to the system of interest. We hav suitable for higher-dimensional chaotic transients that precede stable

\[\text{REFERENCES} \]

ACKNOWLEDGMENTS

This work was supported by DOE Energy Research.) In addition to the Science Consortium under the sup

\[\text{REFERENCES} \]

spanned by $\mathbf{g}_n = \partial F(y_n, \rho, \phi)/\partial \rho$ and $\mathbf{g}_p = \partial F(y_n, \rho, \phi)/\partial \phi$ that intersect the stable manifold S_1 of x_1. The procedure outlined above can be similarly extended to different dimensions and different numbers of positive Lyapunov exponents.

Assume now that a three-level targeting tree has been constructed. The map can be iterated until the trajectory lands at a point y near a point x in the tree. Suppose that x is in a level 3 branch. The base of this branch is chosen as an interim target, and the orbit is directed there by the method described above.

Next we set the interim target to be the root of the adjoining level 2 branch. The orbit is steered to the new target, and the process is repeated until the final target is attained. The orbit is then stabilized at the fixed point by applying the OGY control procedure.

In the procedure described above, an initial condition x is iterated until the uncontrolled orbit encounters the tree. Another possibility is to generate a cloud of points by calculating the image of x under a small random parameter perturbation (applied to ρ) and repeating this many times. Thus all points in the cloud are within one iteration of x. This entire cloud can then be iterated forward a certain number of times, and each time a point in the cloud encounters the tree, its position is recorded. In this way many different paths from the initial condition x onto the tree can be found, and from these we can select the path that ultimately reaches the target in the fewest number of iterations.

11.5 CONCLUSIONS

In summary, we have presented an algorithm for converting chaos into periodic motion by using only small parameter perturbations. This method takes advantage of chaos and thus avoids the need to make large-scale changes to the system of interest. We have also described a global control method suitable for higher-dimensional systems that efficiently reduces the length of chaotic transients that precede stabilization. These methods promise to have a profound impact on material processing and manufacturing.

ACKNOWLEDGMENTS

This work was supported by DOE (Office of Scientific Computing, Office of Energy Research). In addition, E. B. was supported by the National Physical Science Consortium under the sponsorship of Argonne National Laboratory.

REFERENCES

CONTROLLING CHAOS IN MECHANICAL SYSTEMS

REFERENCES

CONTROLLING CHAOS IN MECHANICAL SYSTEMS

The widespread existence of chaotic behavior and the great interest in the development of control techniques in chaotic systems has led to the use of feedback control methods in a variety of applications. For example, the OGY approach is often used in practice. This method involves the identification of a periodic orbit and the stabilization of the system by applying control signals that are proportional to the difference between the current state of the system and the desired periodic orbit. The control is then adjusted to maintain the system on the desired orbit.

The OGY approach and similar techniques have been successfully used in various applications, including the control of lasers, chemical reactions, and mechanical systems. However, the implementation of these methods can be challenging, and the design of controllers is often complex. Further research is needed to improve the efficiency and robustness of control systems in chaotic environments.