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We describe a simple conductance-based model neuron that includes intra- and extra-cellular
ion concentration dynamics and show that this model exhibits periodic bursting. The bursting
arises as the fast spiking behavior of the neuron is modulated by the slow oscillatory behavior
in the ion concentration variables, and vice versa. By separating these time scales and studying
the bifurcation structure of the neuron, we catalog several qualitatively different bursting profiles
that are strikingly similar to those seen in experimental preparations. Our work suggests that ion
concentration dynamics may play an important role in modulating neuronal excitability in real
biological systems.
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I. INTRODUCTION

The Hodgkin-Huxley equations [1] are of fundamental
importance in theoretical neuroscience. These equations
assume that the intra- and extra-cellular ion concentra-
tions of sodium and potassium are constant. While this
may be a reasonable assumption for the squid giant axon
preparation (for which the equations were originally de-
veloped), its validity in other cases is not clear. In the
mammalian brain, for example, the neurons are much
smaller and they are more tightly packed, resulting in
significantly smaller intra- and extra-cellular volumes.
Thus, typical ionic currents can have a much larger effect
on the ion concentrations in this case.

The effects of extracellular potassium ([K]o) accumu-
lation on neuronal excitability have long been recognized
[2–5], and deficiencies in [K]o regulation have been im-
plicated in various types of epilepsy (for a review, see [6])
and spreading depression [7, 8]. More recently, computa-
tional studies have begun to clarify the role of impaired
[K]o regulation [9–15] as well as other varying ion con-
centrations [16, 17].

In this work, we consider from a dynamical systems
perspective the role of ion concentration dynamics in the
generation of periodic bursting behavior. To emphasize
the generality of our approach, we base our model on
the standard Hodgkin-Huxley equations. We augment
these with additional equations that describe the dynam-
ics of both intra- and extra-cellular sodium and potas-
sium. The inclusion of sodium is relatively novel and
plays a crucial role in the dynamics described here. We
also include terms describing pumps, extracellular dif-
fusion, and a simple glial buffering system. A different
analysis of this system was presented in [18].
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II. MODEL

We begin by explicitly adopting the standard conven-
tion that an outward membrane current is defined as be-
ing positive [19]. Thus, the membrane potential V is
given by

C
dV

dt
= −Imembrane (1)

where Imembrane represents the sum of the various mem-
brane currents. We aim in this work to consider a very
simple and general model neuron. Hence we include only
the standard Hodgkin-Huxley sodium current (with in-
stantaneous activation), the delayed-rectifier potassium
current, and leak current. We write the latter in terms of
separate sodium, potassium, and chloride contributions
[16]. Thus,

Imembrane = INa + IK + ICl

INa = gNa[m∞]
3
h (V − ENa) + gNaL (V − ENa)

IK = gKn4 (V − EK) + gKL (V − EK)
ICl = gClL (V − ECl) ,

(2)

where the gi (i = Na, K, Cl) are maximum conductances.
Time is measured in milliseconds, voltage in millivolts,
and C, I, and g are measured in units per unit of mem-
brane area, i.e., µF/cm2, µA/cm2, and mS/cm2, respec-
tively. The reversal potentials Ei are given in terms of
the instantaneous intra- and extracellular ion concentra-
tions by Nernst equations:

ENa = 26.64 ln
(

[Na]
o

[Na]
i

)

EK = 26.64 ln
(

[K]
o

[K]
i

)

.
(3)

We fix ECl = −81.9386 mV.
The extracellular potassium and intracellular sodium

concentration dynamics are given by

τ
d[K]

o

dt
= γβIK − 2βĨpump − Ĩglia − Ĩdiffusion

τ
d[Na]

i

dt
= −γINa − 3Ĩpump,

(4)
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where the concentrations are measured in millimolar
(mM). γ = 4.45 × 10−2 is a unit conversion factor that
converts the membrane currents into mM/sec (see Ap-
pendix), and β = 7 is the ratio of the intracellular to
extracellular volume [17]. The terms with tildes are the
molar currents (mM/sec) given below, and τ = 103 bal-
ances the time units.
The pump, glia, and diffusion molar currents are given

by

Ĩpump = ρ
(

1 + exp
(

25−[Na]
i

3

))−1
(

1

1+exp(5.5−[K]
o)

)

Ĩglia = G
(

1 + exp
(

18−[K]
o

2.5

))−1

Ĩdiffusion = ε ([K]o − kbath) .
(5)

We set the default parameter values to ρ = 1.25 mM/sec,
G = 66.666 mM/sec, and ε = 1.333 Hz. kbath repre-
sents the potassium concentration in the reservoir, i.e.,
the bathing solution for a slice preparation, or the vas-
culature in vivo. We set kbath = 4 mM for normal physi-
ological conditions.
The intracellular potassium and extracellular sodium

concentrations are obtained from the following simplify-
ing assumptions that allow us to reduce the dimension-
ality of the system [18]:

[K]i = 140mM+ (18mM− [Na]i)
[Na]o = 144mM− β ([Na]i − 18mM) .

(6)

The first assumption is that the sodium membrane cur-
rent is the dominant means by which sodium is trans-
ported across the membrane, and that during the course
of an action potential, the transport of sodium and potas-
sium are simply related. The second assumption is that
the total amount of sodium is conserved.
The remaining parameters and the equations for the

gating variables are given in the Appendix.

III. RESULTS

A. Fixed ion concentrations

We begin with a discussion of the dynamical structure
of our model subject to constant values of the ion concen-
trations. That is, we set [K]o and [Na]i to fixed prede-
termined values, and obtain the remaining concentrations
using Equations (6). We then examine the behavior of
the neuron as given by Equations (1)–(3).
Figure 1 shows bifurcation diagrams obtained under

these conditions. The features in these diagrams clarify
the neuron’s bursting behavior as the ion concentrations
undergo slow oscillations, as explained below.
Figure 1A is constructed by holding [Na]i fixed at

10mM and plotting the asymptotic values of the mem-
brane potential V versus several fixed values of [K]o.
Below approximately 5.7mM, the neuron is attracted to
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FIG. 1: Bifurcation diagrams describing the neuron’s asymp-
totic behavior with fixed ion concentrations. In (A), [Na]i =
10mM. The detailed structure in the upper part of (B) is
shown in Figure 5.

a stable equilibrium (shown as a solid line) that corre-
sponds to the resting state. At approximately [K]o =
5.7mM, this equilibrium coalesces with a coexisting un-
stable equilibrium (dotted line) in a saddle-node bifur-
cation that occurs on an invariant closed curve (of infi-
nite period) that appears simultaneously. This scenario is
known as a SNIC bifurcation [34]. Beyond this, for values
of [K]o between 5.7mM and 35.2mM, a stable limit cycle
appears, reflecting regular spiking in the neuron. This is
depicted in the diagram by filled circles that mark the
maximum and minimum values of the membrane voltage
during a cycle. For increasing values of [K]o approach-
ing [K]o = 35.2mM from below, the amplitude of this
periodic orbit decreases and the orbit eventually merges
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FIG. 2: (Color) Asymptotic behavior of the ion concentra-
tions as kbath (in mM) is varied. The curve on the left de-
notes stable equilibria and corresponds to kbath ranging from
4.0 to 7.615. Projections of limit cycles (loops) are shown for
kbath = 7.62, 8.0, 8.5, and 8.95 mM; the thickness of the loops
on the right reflect small fast ion concentration fluctuations
due to spiking behavior. The curve in the upper right, for
kbath ranging from 8.8 to 15.0, denotes small-amplitude loops
that correspond to tonic spiking (see inset).

with the coexisting unstable equilibrium in a supercritical
Hopf bifurcation. For [K]o > 35.2mM, a stable equilib-
rium is found – this is the state of depolarization block
[22].
Figure 1B is a two-dimensional bifurcation diagram

which shows the location of the SNIC and Hopf bifur-
cations as the value of [Na]i is varied. These curves de-
lineate the boundaries of different attracting behaviors
of the neuron. To the left of the SNIC curve, the neu-
ron is attracted to the resting equilibrium. Between the
SNIC and the Hopf curves, the neuron exhibits regular
spiking, and to the right of the Hopf curve, the neuron is
attracted to the depolarization block equilibrium. (The
detailed structure at the top of this diagram is discussed
below.)

B. Dynamic ion concentrations

We now describe the behavior of the full system, in
which the ion concentrations are allowed to evolve dy-
namically. In Figure 2, we plot the asymptotic behavior
of the ion concentrations for several values of kbath. Also
included in the figure is a portion of the SNIC curve from
Figure 1B.
At the default parameter values described above (with

kbath = 4.0 mM), the entire system approaches a stable
equilibrium resting state for which the membrane voltage
and the ion concentrations assume fixed values. As kbath
is increased, these equilibrium values change and sweep
out the solid curve shown on the left of Figure 2. At
approximately kbath = 7.615 mM, this curve collides with
the SNIC boundary. Just beyond this value, the system
jumps to a limit cycle. As kbath continues to increase, the
projection of this limit cycle onto the ion concentration
variables drifts upward and to the right, as shown in the
figure. Henceforth, for brevity, we refer to such limit
cycle projections as “loops”.
Note that these large-amplitude loops straddle the

SNIC curve. In addition, they have periods on the order
of several tens of seconds. Consequently, as the system al-
ternately transitions between the resting and the spiking
regions, there is ample time to exhibit those asymptotic
behaviors. That is, the neuron bursts. For example, for
kbath = 8.0 mM, the ion concentrations are attracted to
the second (red) loop in Figure 2, and the correspond-
ing behavior of the membrane voltage is shown below in
Figure 4A.
At approximately kbath = 9.0 mM, the large-amplitude

loop disappears. For larger kbath, the ion concentrations
exhibit very small-amplitude loops, as shown in the inset
of Figure 2. Since this loop lies entirely within the spik-
ing region, the neuron exhibits tonic spiking. Indeed, the
loop itself represents the small changes in the ion concen-
trations due to individual action potentials.
We note in passing that we have observed multista-

bility [23–25]. For values of kbath approximately in the
interval (8.8, 9.0) mM, a bursting solution coexists with
a tonically-spiking state for the same parameter values.
This is consistent with the analysis based on a reduced
model in [18].

C. Catalog of bursting types

The results presented above demonstrate that for pa-
rameter values in appropriately chosen ranges, the sys-
tem evolves on a limit cycle whose projection onto the ion
concentration variables forms a loop that straddles the
SNIC curve, and the neuron bursts. Bursting behaviors
of various qualitatively different kinds can be exhibited
by the system if similar ion concentration loops straddle
the bifurcation curves of Figure 1B in different ways. Ac-
cordingly, we can catalog all the possible arrangements,
and examine the nature of the resulting bursting pat-
terns.
Figure 3 shows four different ion concentration loops

labeled A, B, C, and D. Loop A is the kbath = 8.0mM
loop discussed above, and the corresponding membrane
voltage trace is shown in Figure 4A. Loop B (G = 20,
ǫ = 0.133, and kbath = 22) straddles both the SNIC and
the Hopf bifurcation curves, and hence displays a qualita-
tively different bursting pattern. As the loop is traversed,
the ion concentration trajectory moves from the rest-
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FIG. 3: (Color) Loops A-D represent the time evolution of the
ion concentrations as the system exhibits limit cycle behav-
ior. The loops are traversed in a counter-clockwise manner.
The dotted and solid lines are the SNIC and Hopf bifurcation
curves, respectively.

ing region into the spiking region by crossing the SNIC
curve, and then continues across the Hopf curve into the
depolarization block region. It then bends around and
crosses these regions in reverse order, and the cycle re-
peats. Consequently, the membrane potential shows a
bursting pattern that moves from quiescence to spiking
to depolarization block and back again, as is shown in
Figure 4B. Loop C (G = 6, ǫ = 0.7, and kbath = 22)
straddles only the Hopf curve, and hence the membrane
potential displays round-shaped bursts, reflecting the su-
percritical nature of the Hopf bifurcation, as shown in
Figure (4C). Finally, Loop D (ρ = 0.9, G = 10, ǫ = 0.5,
kbath = 20, and γ = 1.0) is similar to loop B, but by
examining the membrane voltage in Figure 4D, one sees
that the event termination transitions smoothly from de-
polarization block back to the resting level without ex-
hibiting any spikes. This is because the return trip along
the upper portion of the loop avoids the Hopf bifurcation.
We clarify this transition in the next section. (Note that,
for nearby parameter sets, it is possible to observe bursts
of this type with more spikes at the event onset than are
shown here.)

Figure 5 shows a magnification of the upper part of
Figure 1B that reveals more detail. As the SNIC curve
continues up from the lower left corner, a codimension-
two bifurcation known as a saddle-node loop (SL)
is encountered [35] at approximately ([K]o, [Na]i) =
(14.994, 34.795) mM. At this point, the curve splits into
two branches corresponding to saddle-node (SN) and ho-
moclinic bifurcations (HC). The saddle-node branch con-
tinues to the upper right and forms a cusp with another

saddle-node branch, while the homoclinic branch contin-
ues up, curves around, and terminates at a (codimension-
two) Bogdanov-Takens (BT) point at approximately
(16.917, 36.714) mM. This point is coincident with the
upper SN branch, and is also an endpoint of the Hopf
bifurcation curve (HB).
Superimposed on this diagram is the upper portion of

loop D from Figure 3, which represents the termination of
the burst event. With the increased magnification, it can
be seen that this part of the ion concentration limit cycle
indeed does not cross the Hopf curve. Instead, it crosses
the two saddle-node curves. To clarify the nature of the
burst termination, we show in the left panel of Figure
6 (labeled ‘D’) the one-dimensional bifurcation diagram
analogous to Figure 1A for [Na]i = 37.2 mM, along with
the burst termination portion of the system’s trajectory.
Also included is an inset showing the membrane voltage
versus time for one complete burst event. It can be seen
that the termination (arrows) occurs when the trajectory
tracking the upper stable equilibrium branch encounters
the second saddle-node bifurcation and drops to the lower
stable equilibrium branch.
The additional detail in Figure 5 permits the identi-

fication of a fifth type of bursting pattern exhibited by
our system (obtained with ρ = 0.9, G = 10, ǫ = 0.5,
kbath = 20, and γ = 0.25). E labels the upper portion of
an ion concentration loop that is slightly lower than the D
loop. It can be seen that this portion of loop E crosses, in
order, the Hopf, saddle-node, and homoclinic bifurcation
curves. The remaining portion of loop E (not shown)
is similar to loop B, and indeed the membrane voltage
traces are similar, but the termination mechanisms are
different. Notably, this type of burst terminates after
a few small-amplitude spikes via homoclinic rather than
SNIC bifurcation; see Figure 6E.
Finally, we note that we have also identified parameter

sets that give rise to loops that encircle the BT point in
Figure 5 while lying entirely above the SL point, as well
as similar loops occurring upward and to the right of
this, including ones that straddle only the two SN curves.
However, the separation of time scales is less clear in
these cases. And although it might exist, we were not
able to find a loop that crosses the SNIC and Hopf curves
and then returns above the saddle-node cusp. Such a
loop would exhibit a burst termination that transitions
from depolarization block to the rest state smoothly and
without a sudden drop in membrane potential.

IV. DISCUSSION

In this paper, we have presented a simple model of
a single neuron with dynamic intra- and extra-cellular
sodium and potassium concentrations that exhibits pe-
riodic bursting behavior. Our goal has been to present
a catalog of the wide variety of qualitatively different
bursting patterns exhibited by this model based on an
understanding of the underlying bifurcation structure.
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FIG. 4: Four qualitatively different bursting patterns corresponding to the four loops shown in Figure 3. In the lower panels,
solid curves represent [K]o (left vertical axes), and dotted curves represent [Na]i (right vertical axes). The event in (D) recurs
with a period of approximately 16.5 seconds, but for clarity, only a portion of one such event is shown.

To do this, we have taken advantage of the large separa-
tion of time scales inherent in the model: that of spikes,
which occur on the order of milliseconds, and that of the
bursting events, which occur on the order of tens of sec-
onds. We have focused attention on the nature of the
fast spiking dynamics by freezing the slow ion concentra-
tion variables and identifying the asymptotic behavior
of the neuron under these conditions. This clarifies how
oscillations in the slow variables modulate the neuron’s
excitability and give rise to bursting.

A crucial aspect of our model that is typically not
present in comparably simple models (to our knowledge)
is the inclusion of sodium concentration dynamics. Thus,
we have two slow variables ([Na]i and [K]o) instead of
one, and it is therefore possible for the slow system to
undergo bifurcations to oscillatory states. Analysis com-
plementary to the work presented here, in which bifurca-

tions in the slow dynamics are analyzed by removing the
fast dynamics via averaging, has been presented in [18].

For this study, we deliberately chose a single neuron
with the classic Hodgkin-Huxley ionic currents in order
to focus attention on the role of the ion concentration
dynamics. Consequently, some quantitative aspects of
the dynamics (e.g., the value of [K]o for the onset of
depolarization block in Figure 1A) are not directly ap-
plicable to mammalian systems. More realistic models
of mammalian systems would require additional currents
and a network structure with significant synaptic activ-
ity. (For example, despite the intriguing similarity of
Figure 4D to phenomena observed in spreading depres-
sion, it is known that spreading depression requires per-
sistent sodium channels [17].) In addition, the absence of
synaptic background activity means that our model neu-
ron transitions abruptly from rest directly to bursting as
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[K]o increases. In a more realistic setting, we would ex-
pect to see an intervening regime of tonic spiking due to
network effects before the onset of bursting.

Although our approach has concentrated on identifying
all possible bursting scenarios without regard to physi-
ological relevance, we note that bursting morphologies
similar to those that we catalog here have been observed
in experimental models of epilepsy, including a high-
potassium model [28], a high-potassium, low-calcium
model [22], and a low-magnesium 4-aminopyridine model
[29]. This suggests that despite the obvious limitations
of our model, it is capturing aspects of the essential dy-
namics in these experiments. And, although there has
been debate about whether a single neuron can undergo
a “seizure” [12, 30], our single-neuron results suggest that
ion concentration dynamics may well play an important
role in epilepsy.

It is interesting to note that in order to obtain our
type D burst, in which the burst termination transitions
smoothly from depolarization block back to rest without
exhibiting spikes (Figure 4D), we found it necessary to
increase the parameter γ, which is inversely proportional
to the volume of our assumed spherical cell (see the Ap-
pendix). With a smaller volume, the internal sodium
concentration is more easily increased to sufficient levels
to prevent spiking. Thus, our model predicts that this
type of burst should be most easily observed in smaller
neurons. Accordingly, this behavior has been seen in hip-
pocampal interneurons (e.g., Figure 4a of [29]). Similar
behavior in other cases, however, may well be due to
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FIG. 6: (Color) Diagrams clarifying the burst termination
behavior corresponding to ion concentration loops D and E
of Figure 5. Insets show complete burst time traces of the
membrane voltage. In D, [Na]i = 37.2 mM ; in E, [Na]i =
36.6 mM .

different mechanisms (e.g., calcium [31] or chloride accu-
mulation [32]), and future work will explore the conse-
quences of including these and other ions [33], as well as
a more realistic collection of channels.

V. CONCLUSION

We have found that a simple model of a single neuron,
augmented by dynamic intra- and extra-cellular ion con-
centrations, can display various kinds of periodic burst-
ing behavior. Our work emphasizes the importance of ion
concentration homeostasis in the maintenance of the nor-
mal physiological state, and suggests that a breakdown in
such homeostatic mechanisms may underlie pathological
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conditions such as epilepsy.
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APPENDIX A: PARAMETERS AND

EQUATIONS FOR GATING VARIABLES

Parameters not specified above were set as follows:

Cm = 1 µF/cm2

gNa = 100 mS/cm2

gNaL = 0.0175 mS/cm2

gK = 40 mS/cm2

gKL = 0.05 mS/cm2

gClL = 0.05 mS/cm2.

The sodium activation was instantaneous, with

m∞ (V ) = αm(V )
αm(V )+βm(V )

αm (V ) = 0.1(V+30)
1−exp(−0.1(V+30))

βm (V ) = 4 exp
(

−
V+55
18

)

.

The remaining gating variables were governed by

dq
dt

= φ [αq (V ) (1− q)− βq (V ) q] , q = h, n

with

φ = 3.0
αh (V ) = 0.07 exp

(

−
V+44
20

)

βh (V ) = 1
1+exp(−0.1(V+14))

αn (V ) = 0.01(V+34)
1−exp(−0.1(V+34))

βn (V ) = 0.125 exp
(

−
V+44
80

)

.

APPENDIX B: DERIVATION OF CONVERSION

FACTORS

To derive the conversion factor γ, we consider a mem-
brane current density I, measured in µA/cm2, and ask:
how many ions exit a cell through a patch of membrane of
area A (cm2) in time ∆t (sec) due to this current? Recall-
ing the convention that membrane currents are positive-
outward, the amount of charge that leaves is

∆Q = (IA)∆t.

Assuming monovalent ions, the number of ions is

∆N =

(

IA

q

)

∆t,

where q = 1.60 × 10−19 Coulombs. Hence, the rate at
which ions pass through the area A is

dN

dt
=

(

IA

q

)

.

Now assume a spherical cell of volume Vin (measured in
cm3) with an intracellular concentration cin of positive
ions measured in ions/cm3. We have

cin =
N

Vin

,

where N is the number of ions within the volume. Hence,

dcin
dt

=

(

1

Vin

)

dN

dt
= −

1

Vin

(

IA

q

)

.

The minus sign has been introduced because a positive
(outward) current corresponds to a decrease in the num-
ber of (positive) ions within the cell.
We wish to express this rate-of-change of concentration

in mM/msec. The expression on the right-hand side has
units

1

cm3

µA
cm2 cm

2

Coul
→ 10−6 ions

cm3sec
→

1

103NA

millimole

msec L
,

where NA = 6.02 × 1023 is Avogadro’s number. Since 1
millimole/L = 1 mM , we have

dcin
dt

= −

(

1

103

)

IA

NAqVin

.

We write

dcin
dt

= −

(

1

103

)

γI (B1)

with

γ ≡

A

NAqVin

=
A

FVin

,

where F = NAq is the Faraday constant. Equation (B1)
is used for the intracellular sodium in Equation (4).
Now assume that the sphere has radius r, and let A be

its total surface area. (More correct would be to let A be
just the area of the channel pores.) Then,

γ =
3

Fr
.

Using r = 7 µm, we obtain γ = 4.45× 10−2. Conversely,
for γ = 0.25 and 1.0, we obtain r = 1.24 and 0.31 µm,
respectively.
Consider now the concentration of positive ions in the

extracellular space. The volume in the expression for
γ must be replaced with the extracellular volume, and
the negative sign in Equation B1 must be removed. Let
β ≡ Vin/Vout. Then γ → γβ, and we have

dcout
dt

=

(

1

103

)

γβI. (B2)

Equation (B2) is used for the extracellular potassium in
Equation (4).
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[15] Fröhlich, F., Sejnowski, T.J., Bazhenov, M.: Net-
work bistability mediates spontaneous transitions be-
tween normal and pathological brain states. Journal of
Neuroscience 30(32), 10734 10743 (2010)

[16] Kager, H., Wadman, W.J., Somjen, G.G.: Simulated
seizures and spreading depression in a neuron model
incorporating interstitial space and ion concentrations.
Journal of Neurophysiology 84, 495512 (2000)

[17] Somjen, G.G.: Ions in the Brain. Oxford University
Press, New York (2004)

[18] Cressman, J.R., Ullah, G., Schiff, S.J., Barreto, E.: The
Influence of Sodium and Potassium Dynamics on Ex-
citability, Seizures, and the Stability of Persistent States:

I. Single Neuron Dynamics. Journal of Computational
Neuroscience 26, 159-170 (2009)

[19] Dayan, P., Abbott, L.F.: Theoretical Neuroscience. MIT
Press, Cambridge (2001)

[20] Izhikevich E.: Dynamical systems in Neuroscience. MIT
Press, Cambridge (2007)

[21] Martens, E., Barreto, E., Strogatz, S.H., Ott, E., So, P.,
Antonsen, T.M.: Exact results for the Kuramoto model
with a bimodal frequency distribution. Physical Review
E 79, 026204 (2009)

[22] Bikson, M., Hahn, P.J., Fox, J.E., Jefferys, J.G.R.:
Depolarization block of neurons during maintenance of
electrographic seizures. J. Neurophysiol. 90, 2402-2408
(2003)

[23] Shilnikov, A.L., Calabrese R., and Cymbalyuk, G.S.:
Mechanism of bi-stability: tonic spiking and bursting in
a neuron model. Physical Review E 71, 056214 (2005)

[24] Cymbalyuk, G.S., Calabrese R., and Shilnikov, A.L.:
How a neuron model can demonstrate co-existence of
tonic spiking and bursting? Neurocomputing 65-66: 869-
875 (2005)
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