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Abstract In these companion papers, we study how the
interrelated dynamics of sodium and potassium affect the
excitability of neurons, the occurrence of seizures, and
the stability of persistent states of activity. In this first paper,
we construct a mathematical model consisting of a single
conductance-based neuron together with intra- and extracel-
lular ion concentration dynamics. We formulate a reduction
of this model that permits a detailed bifurcation analysis,
and show that the reduced model is a reasonable approxi-
mation of the full model. We find that competition between
intrinsic neuronal currents, sodium-potassium pumps, glia,

and diffusion can produce very slow and large-amplitude
oscillations in ion concentrations similar to what is seen
physiologically in seizures. Using the reduced model, we
identify the dynamical mechanisms that give rise to these
phenomena. These models reveal several experimentally
testable predictions. Our work emphasizes the critical role of
ion concentration homeostasis in the proper functioning of
neurons, and points to important fundamental processes that
may underlie pathological states such as epilepsy.

Keywords Potassium dynamics . Bifurcation . Glia .

Seizures . Instabilities

1 Introduction

The Hodgkin–Huxley equations (Hodgkin and Huxley
1952) have played a vital role in our theoretical under-
standing of various behaviors seen in neuronal studies both
at the single-cell and network levels. However, users of
these equations often assume that the intra- and extra-
cellular ion concentrations of sodium and potassium are
constant. While this may be a reasonable assumption for the
isolated squid giant axon, its validity in other cases,
especially in the mammalian brain, is subject to debate. In
this first of two companion papers, we investigate the role
of local fluctuations in ion concentrations in modulating the
behavior of a single neuron.

Most studies investigating normal brain states have
focused primarily on the intrinsic properties of neurons.
Although some studies have examined the role that the
extracellular micro-environment plays in pathological be-
havior (Bazhenov et al. 2004; Kager et al. 2000; Somjen
2004; Park and Durand 2006; Frohlich et al. 2008), little
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attention has been paid to the cellular control of micro-
environmental factors as a means to modulate the neuronal
response (Park and Durand 2006).

In general, the intrinsic excitability of neuronal networks
depends on the reversal potentials for various ion species.
The reversal potentials in turn depend on the intra- and
extracellular concentrations of the corresponding ions.
During neuronal activity, the extracellular potassium and
intracellular sodium concentrations ([K]o and [Na]i, respec-
tively) increase (Amzica et al. 2002; Heinemann et al.
1977; Moody et al. 1974; Ransom et al. 2000). Glia help to
reestablish the normal ion concentrations, but require time
to do so. Consequently, neuronal excitability is transiently
modulated in a competing fashion: the local increase in
[K]o raises the potassium reversal potential, increasing
excitability, while the increase in [Na]i leads to a lower
sodium reversal potential and thus less ability to drive
sodium into the cell. The relatively small extracellular space
and weak sodium conductances at normal resting potential
can cause the transient changes in [K]o to have a greater
effect over neuronal behavior than the changes in [Na]i, and
the overall increase in excitability can cause spontaneous
neuronal activity (McBain 1994; Rutecki et al. 1985;
Traynelis and Dingledine 1988).

In this paper, we examine the mechanisms by which the
interrelated dynamics of sodium and potassium affect the
excitability of neurons and the occurrence of seizure-like
behavior. Since modest increases in [K]o are known to
produce more excitable neurons, we seek to understand ion
concentration dynamics as a possible mechanism for giving
rise to and perhaps governing seizure behavior. Using the
major mechanisms responsible for the upkeep of the
cellular micro-environment, i.e. pumps, diffusion, glial
buffering, and channels, we mathematically model a
conductance-based single neuron embedded within an
extracellular space. We formulate a reduction of this model
that permits a detailed analytical bifurcation analysis, and
show that the reduced model is a reasonable approximation
of the full model. The effects of ion concentration dynamics
on the behavior of networks of neurons is addressed in the
companion article (Ullah et al. 2009).

Some related preliminary results have previously
appeared in abstract form (Cressman et al. 2008).

2 Methods

2.1 Full model

Our full model consists of one single-compartment con-
ductance-based neuron containing sodium, potassium,
calcium-gated potassium, and leak currents, augmented
with dynamic variables representing the intracellular sodi-

um and extracellular potassium concentrations. These ion
concentrations are affected by the neuron’s intrinsic ionic
currents as well as a sodium–potassium pump current, a
glial current, and potassium diffusion. Finally, the concen-
trations are coupled to the membrane voltage equations via
the Nernst equation.

The conductance-based neuron is modeled as follows:

C d V
d t ¼ INa þ IK þ ICl

INa ¼ �gNa m1 Vð Þ½ �3h V � VNað Þ � gNaL V � VNað Þ
IK ¼ � gKn4 þ gAHP Ca½ �i

1þ Ca½ �i

� �
V � VKð Þ � gKL V � VKð Þ

ICl ¼ �gClL V � VClð Þ
d q
d t ¼ f aq Vð Þ 1� qð Þ � bq Vð Þq� �

; q ¼ n; h
d Ca½ �i
d t ¼ �0:002gCa V � VCað Þ= 1þ exp � V þ 25ð Þ=2:5ð Þf g

� Ca½ �i
�
80

ð1Þ

The supporting rate equations are:

m1 Vð Þ ¼ am Vð Þ= am Vð Þ þ bm Vð Þð Þ
am Vð Þ ¼ 0:1 V þ 30ð Þ= 1� exp �0:1 V þ 30ð Þð Þ½ �
bm Vð Þ ¼ 4 exp � V þ 55ð Þ=18ð Þ
an Vð Þ ¼ 0:01 V þ 34ð Þ= 1� exp �0:1 V þ 34ð Þð Þ½ �
bn Vð Þ ¼ 0:125 exp � V þ 44ð Þ=80ð Þ
ah Vð Þ ¼ 0:07 exp � V þ 44ð Þ=20ð Þ
bh Vð Þ ¼ 1= 1þ exp �0:1 V þ 4ð Þð Þ½ �
Note that the overall leak current consists of the final terms in
the above expressions for INa and IK, plus ICl; similar leak
currents were used in (Kager et al. 2000). Also, the gating
variable m is assumed to be fast compared to the voltage
change; we therefore assume it reaches its equilibrium
value m1 immediately (Rinzel 1985; Pinsky and Rinzel
1994). Finally, the active internal calcium concentration is
used only in conjunction with the calcium-gated potassium
current in order to model the adaptation seen in many
excitatory cells (Mason and Larkman 1990; Wang 1999).

The meaning and values of the parameters and variables
used in this paper are given in Table 1.

The potassium concentration in the interstitial volume
surrounding each cell was continuously updated based on
K+ currents across the neuronal membrane, Na+–K+ pumps,
uptake by the glial network surrounding the neurons, and
lateral diffusion of K+ within the extracellular space. Thus,
we have

d K½ �o
d t

¼ �0:33IK � 2bIpump � Iglia � Idiff : ð2Þ

The factor 0.33 mM.cm2/μcoul converts current density to
rate-of-change of concentration (see Appendix). The factor
β corrects for the volume fraction between the interior of
the cell and the extracellular space when calculating the
concentration change and is based on Mazel et al. (1998),
McBain et al. (1990), and Somjen (2004).
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The sodium-potassium pump is modeled as a product of
sigmoidal functions as follows:

Ipump ¼ r

1:0þ exp 25:0� Na½ �i
� ��

3:0
� �

 !

� 1:0

1:0þ exp 5:5� K½ �o
� �

 !
:

Normal resting conditions are attained when ρ=1.25 mM/s.
Each term saturates for high values of internal sodium and
external potassium, respectively. More biophysically real-
istic models of pumps, such as those in Lauger (1991)
produce substantially similar results.

The capacity of glial cells to remove excess potassium
from the extracellular space is modeled by

Iglia ¼ Gglia

1:0þ exp 18� K½ �o
� ��

2:5
� � :

This highly simplified model incorporates both passive and
active uptake into a single sigmoidal response function that
depends on the extracellular potassium concentration alone.
Normal conditions correspond to Gglia=66 mM/s, and [K]o=
4.0 mM. A similar but more biophysical approach was used
in (Kager et al. 2000). Two factors allow the glia to provide
a nearly insatiable buffer for the extracellular space. The first
is the very large size of the glial network. Second, the glial
endfeet surround the pericapillary space, which, through

Table 1 Model variables and parameters

Variable Units Description

V mV Membrane potential
INa μA/cm2 Sodium current
IK μA/cm2 Potassium current
IL μA/cm2 Leak current
m1 Vð Þ Activating sodium gate
h Inactivating sodium gate
n Activating potassium gate
α(V) Forward rate constant for transition between open and closed state of a gate
β(V) Backward rate constant for transition between open and closed state of a gate
[Ca]i Mm Intracellular calcium concentration
VNa mV Reversal potential of persistent sodium current
VK mV Reversal potential of potassium current
[Na]o mM Extracellular sodium concentration
[Na]i mM Intracellular sodium concentration
[K]o mM Extracellular potassium concentration
[K]i mM Intracellular potassium concentration
Ipump mM/s Pump current
Idiff mM/s Potassium diffusion to the nearby reservoir
Iglia mM/s Glial uptake

Parameter Value Description
C 1 μF/cm2 Membrane capacitance
gNa 100 mS/m2 Conductance of persistent sodium current
gK 40 mS/m2 Conductance of potassium current
gAHP 0.01 mS/m2 Conductance of afterhyperpolarization current
gKL 0.05 mS/m2 Conductance of potassium leak current
gNaL 0.0175 mS/m2 Conductance of sodium leak current
gClL 0.05 mS/m2 Conductance of chloride leak current
f 3 s−1 Time constant of gating variables
VCl −81.93 mV Reversal potential of chloride current
gCa 0.1 mS/m2 Calcium conductance
VCa 120 mV Reversal potential of calcium
β 7.0 Ratio of intracellular to extracellular volume of the cell
ρ 1.25 mM/s Pump strength
Gglia 66 mM/s Strength of glial uptake
ɛ 1.2 s−1 Diffusion constant
ko;1 4.0 mM Steady state extracellular potassium concentration
[Cl]i 6.0 mM Intracellular chloride concentration
[Cl]o 130.0 mM Extracellular chloride concentration
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interactions with arteriole walls, can effect blood flow; this,
in turn, can increase the buffering capability of the glia
(Paulson and Newman 1987; Kuschinsky et al. 1972;
McCulloch et al. 1982).

The diffusion of potassium away from the local
extracellular micro-environment is modeled by

Idiff ¼ " K½ �o�ko;1
� �

:

Here, ko;1 is the concentration of potassium in the largest
nearby reservoir. Physiologically, this would correspond to
either the bath solution in a slice preparation, or the
vasculature in the intact brain (noting that [K]o is kept
below the plasma level by trans-endothelial transport). For
normal conditions, we use ko;1 ¼ 4:0mM . The diffusion
constant ε, obtained from Fick’s law, is ε=2D/Δx2, where
we use D=2.5×10−6 cm2/s for K+ in water (Fisher et al.
1976) and estimate Δx≈20 μm for intact brain reflecting
the average distance between capillaries (Scharrer 1944);
thus ε=1.2 Hz.

To complete the description of the potassium concentra-
tion dynamics, we make the assumption that the flow of
Na+ into the cell is compensated by flow of K+ out of the
cell. Then [K]i can be approximated by

K½ �i¼ 140:0 mMþ 18:0 mM� Na½ �i
� �

; ð3Þ
where 140.0 and 18.0 mM reflect the normal resting [K]i
and [Na]i respectively. The limitations of this approxima-
tion will be addressed in the discussion section.

The intra- and extracellular sodium concentration dy-
namics are modeled by

d Na½ �i
dt

¼ 0:33
INa
b

� 3Ipump ð4Þ

Na½ �o¼ 144:0 mM� b Na½ �i�18:0 mM
� �

: ð5Þ
In Eq. (5), we assume that the total amount of sodium is
conserved, and hence only one differential equation for
sodium is needed. Here, 144.0 mM is the sodium
concentration outside the cell under normal resting con-
ditions for a mammalian neuron.

Finally, the reversal potentials appearing in Eq. (1) are
obtained from the ion concentrations via the Nernst equation:

VNa ¼ 26:64 ln Na½ �O
Na½ �i

� �
VK ¼ 26:64 ln K½ �O

K½ �i

� �
VCl ¼ 26:64 ln Cl½ �i

Cl½ �o

� �
:

With the leak conductances listed above, the chloride concen-
trations were fixed at [Cl]i=6.0 mM and [Cl]o=130 mM.

Thus, the dynamic variables of the full model are V, n, h,
[Ca]i, [K]o, and [Na]i. Despite the fact that we have

neglected many features of real mammalian cells (such as
the geometrically complex dendritic and axonal structure
and the related spatially complex distribution of channels
and cotransporters, as well as the presence of immobile
anions which are strictly required to maintain electric and
osmotic balance), our model captures the essential dynam-
ics that we wish to explore.

In the results section, we will be interested in varying the
parameters Gglia, ε, ko;1, and ρ. We will present our results
in terms of these parameters divided by their normal values,
for example, Gglia ¼ Gglia

�
Gglia;normal, where the overbar

indicates the normalized parameter.

2.2 Reduced model

In order to more effectively study the bifurcation structure
of the model presented above, we formulated a reduction by
eliminating the fast-time-scale spiking behavior in favor of
the slower ion concentration dynamics. This is accom-
plished by replacing the entire Hodgkin–Huxley mecha-
nism with empirical fits to time-averaged ion currents.
Using the membrane conductances from the full model, we
fixed the internal and external sodium and potassium
concentration ratios and allowed the model cell to attain
its asymptotic dynamical state, which was either a resting
state or a spiking state. Then, the sodium and potassium
membrane currents were time-averaged over one second.
These data were fit to products of sigmoidal functions of
the sodium and potassium concentration ratios, resulting in
the (infinite-time) functions INa1 Na½ �i= Na½ �o; K½ �o

�
K½ �i

� �
and Ik1 Na½ �i= Na½ �o; K½ �o

�
K½ �i

� �
. Details are available in

Appendix. INa1 is nearly identical to Ik1, differing signif-
icantly only near normal resting concentration ratios due to
differences in the sodium and potassium leak currents.

Thus, our reduced model consists of Eqs. (2–5), with INa
and IK replaced with the empirical fits described above (see
Appendix for additional details).

2.3 Bifurcations in the reduced model

Our main results in this paper consist of identifying
bifurcations in the reduced model and analyzing their
implications for the behavior of the full model. We observe
that depending on the various parameters, the ion concen-
trations in the reduced model approach either stable
equilibria, and thus remain constant, or they approach
stable periodic orbits, and thus exhibit oscillatory behavior
(Fig. 1). As parameters are changed, the stability of these
solutions change. This happens through bifurcations (a
good general reference is Strogatz 1994). Most relevant for
our purposes are the Hopf bifurcation, and the saddle-node
bifurcation of periodic orbits. In a Hopf bifurcation, an
equilibrium solution either gains or loses stability, and
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simultaneously, a periodic orbit either appears or disappears
from the same point1. In a saddle-node bifurcation of
periodic orbits, a pair of periodic orbits—one stable and
one unstable—either appears or disappears suddenly, as if
out of “thin air”.

Bifurcation diagrams were obtained using XPPAUT
(Ermentrout 2002). Code for both of our models is
available from ModelDB.2

3 Results

3.1 Overview

In an experimental slice preparation, an easily-performed
experimental manipulation is to change the potassium
concentration in the bathing solution. Such preparations have
been used to study epilepsy (Jensen and Yaari 1997; Traynelis
and Dingledine 1988; Gluckman et al. 2001). At normal
concentrations (~4 mM), normal resting potential is main-
tained. However, at higher concentrations (8 mM, for
example) bursts and seizure-like events occur spontaneously.

We begin discussing the dynamics of our models by
considering a similar manipulation, corresponding to
varying the normalized parameter ko;1. In the full model,
setting ko;1 ¼ 2:0 (i.e., doubling the normal concentration
of potassium in the bath solution) leads to spontaneously-
occurring prolonged periods of rapid firing, as illustrated in
the top trace of Fig. 1. These oscillations are remarkably
similar to experimental results reported by several inves-
tigators (see, for example, Figs. 1 and 6 of Jensen and Yaari
(1997), in which the authors use a high potassium in vitro
preparation, and Fig. 2 of Ziburkus et al. (2006), which
reports results from a 4-aminopyridine in vitro preparation).
Each event lasts on the order of tens of seconds and
consists of many spikes, each of which occurs on the order
of 1 ms. Thus, the full model contains dynamics on at least
two distinct time scales that are separated by four orders of
magnitude: fast spiking from the Hodgkin-Huxley mecha-
nism, and a slow overall modulation. The solid traces in the
middle and bottom panels show that this slow modulation
corresponds to slow periodic behavior in the potassium and
sodium ion concentrations, respectively.

Our reduced model was constructed in order to remove
the fast Hodgkin–Huxley spiking mechanism and focus
attention on the slow dynamics of the ion concentrations.
The dashed traces in the middle and bottom panels of Fig. 1
show the potassium and sodium ion concentrations

obtained from the reduced model for the same parameters
used above. Although these traces are not identical to those
of the full model, it is evident that the reduced model
captures the qualitative behavior of the ion concentrations
quite well.

The separation of time scales achieved by our model
reduction (see, for example, Rinzel and Ermentrout (1989);
Kepler et al. (1992)) yields a model that is amenable to
numerical bifurcation analysis. Knowledge of the bifurca-
tion structure in turn informs us about the dynamical
mechanisms that underlie the full model. In the following,
we will first describe the main dynamical features of the
reduced model, and then examine the implications for the
behavior of the full model.

3.2 Analysis of the reduced model

Figure 2 shows a bifurcation diagram obtained using the
reduced model. This diagram plots the minimum and
maximum asymptotic values of the extracellular potassium
concentration [K]o versus a range of values of the
reservoir’s normalized potassium concentration ko;1. For
low values of this parameter, [K]o is observed to settle at a
stable equilibrium. The value of [K]o corresponding to this
equilibrium increases with ko;1 until the equilibrium loses
stability via a subcritical Hopf bifurcation at ko;1 � 1:9.
This means that at this point, an unstable periodic orbit

Fig. 1 Comparison of the reduced model to the full spiking model.
The top plot shows the membrane voltage for the neuron in the full
model. The middle traces show [K]o for both the full model (solid
line) and the reduced model (dashed line). The bottom traces show
[Na]i with the same convention. All data were integrated with an
elevated bath potassium concentration at ko;1 ¼ 2:0, with all other
parameters set to their normal values

1 Depending on the stability of the periodic orbit involved, Hopf
bifurcations are classified as sub- or supercritical.
2 http://senselab.med.yale.edu/modeldb/
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collapses onto the equilibrium, and both disappear. [K]o is
subsequently attracted to a coexisting large-amplitude
stable periodic orbit3. Thus, large-amplitude oscillations in
[K]o appear abruptly. These oscillations persist as ko;1 is
increased until the same sequence of bifurcations occurs in
the opposite order at ko;1 � 2:13. At this higher value
of ko;1, the unstable equilibrium undergoes a subcritical
Hopf bifurcation, becoming stable and giving rise to an
unstable periodic orbit whose amplitude quickly rises with
increasing ko;1. This orbit then collides with the large-
amplitude stable periodic orbit at ko;1 � 2:15, and both
orbits disappear in a saddle-node bifurcation of periodic
orbits. In this manner, the periodic behavior of [K]o is
terminated. For still higher values of ko;1, [K]o approaches
the equilibrium values shown at the far right in Fig. 2.

In order to examine the boundaries of the oscillatory
behavior described above with respect to pump strength r,
the diffusion coefficient ", and glial buffering strength Gglia,
we constructed the bifurcation diagrams shown in Fig. 3.
First, we fixed all parameters at their normal resting values
except ko;1, which we set to 2 in order to obtain the
oscillatory behavior discussed above. We then separately
varied r, ", and Gglia away from their normal resting values.
If r and " are increased from their nominal values of 1

(Fig. 3a, b), we see that the oscillatory behavior terminates
in a manner similar to that described above; that is, an
unstable periodic orbit appears via a subcritical Hopf
bifurcation which grows until it collides with and annihi-
lates the stable periodic solution at a saddle-node bifurca-
tion of periodic orbits. (This is most apparent in Fig. 3(a).)
The same scenario applies as these parameters are

3 The stable and unstable periodic orbits involved in this scenario
appear via a saddle-node bifurcation at a slightly smaller parameter
value that is extremely close to that of the Hopf bifurcation. Thus, the
sequence of bifurcations is not immediately apparent in Fig. 2. The
abruptness of these transitions, and the difficulty in resolving them
numerically, is due to the “canard” mechanism (Dumortier and
Roussarie 1996; Wechselberger (2007)).

(a)

(b)

(c)

Fig. 3 Bifurcation diagrams for [K]o as a function of a the normalized
pump strength, b the diffusion coefficient, and c the glial strength. All
plots were produced with an elevated bath potassium concentration at
ko;1 ¼ 2:0

10

9

8

7

6

Fig. 2 The bifurcation diagram for [K]o as a function of the bath
potassium concentration ko;1, revealing a region of oscillatory
behavior. All other parameters were set equal to their normal values.
Triangles represent equilibria (i.e., steady states), and circles represent
periodic orbits (i.e., oscillatory behavior); stability is denoted by solid
(stable) and open (unstable) symbols
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decreased4,5. The situation is similar for the glial strength
Gglia, except that on the left, we see no saddle-node
bifurcation of periodic orbits for positive values of Gglia

(Fig. 3c).
It is notable that if " or Gglia are reduced from their

normal values, larger amplitude oscillations in [K]o occur.
This is because, in both cases, the trafficking of potassium
away from the extracellular space is impeded, and
consequently, [K]o builds up more effectively during the
spiking phase of the cell’s activity (see Fig. 6, below). In
contrast, changing r in either direction results in very little
change in the amplitude of the [K]o oscillations. Further-
more, the bistable region on the right side of the r diagram
is quite wide, and hence hysteretic behavior as r is varied
across this region may be particularly amenable to
experimental observation (e.g. with ouabain). Finally, we
note that the right branch of stable equilibria in Fig. 3(a)
corresponds to higher values of [K]o than the left branch.
This is because the cell is active—either spiking or in
depolarization block—and thus there is a large membrane
potassium current flowing into the extracellular space
which must be balanced by pumps and otherwise “normal”
diffusion and glial currents.

The two-parameter bifurcation diagram shown in Fig. 4
provides a more complete understanding of the oscillatory
behavior of [K]o in our reduced model with respect to the
variation of both " and Gglia, with ko;1 ¼ 2. The dashed
lines at Gglia ¼ 1 and " ¼ 1 correspond to the one-
dimensional bifurcation diagrams shown in Figs. 3b and
c. The solid curves represent Hopf bifurcations, and the
intersection of these dashed lines with the Hopf curves
correspond to the Hopf bifurcations (points) in the earlier
figures. Thus, the Hopf curves define a region within which
[K]o is obliged to oscillate, because the only stable attractor
is a periodic orbit. To facilitate discussion, we refer to this
region as the “region of oscillation”, or RO. Outside of the
RO, stable equilibrium solutions for [K]o exist

6.
The dashed line at Gglia ¼ 1:75 corresponds to the one-

dimensional bifurcation diagram shown in Fig. 5. This is
drawn at the same scale as Fig. 3b (the Gglia ¼ 1 diagram)
to facilitate comparison. We note that the amplitude of the
oscillation in [K]o is significantly smaller in this region of
the RO. Furthermore, the Hopf bifurcation on the right (at
about " ¼ 3:2) is now supercritical. This means that the

amplitude of the [K]o oscillation decays smoothly to zero as
this point is approached from the left.

3.3 Analysis of the full model

We now investigate whether the dynamical features
identified above in our reduced model correspond to similar
features in our full model. Figure 6 shows traces of the
membrane voltage (upper traces), [K]o (solid lower traces),
and [Na]i (dashed lower traces) versus time, all obtained
from the full model, corresponding to the parameter values
marked by the numbered squares in Fig. 4. For the regions
outside of the RO, the reduced model predicts stable
equilibrium solutions for the ion concentrations. For exam-
ple, at point 1, [K]o is slightly elevated at a value near 6 mM,
and the membrane voltage of the full model remains constant
at −62 mV (not shown). However, at point 2, the full model
exhibits tonic firing, as shown in Fig. 6 a. Here, [K]o is
sufficiently high such that the neuron is depolarized beyond
its firing threshold, and [K]o remains essentially constant
with only small perturbations of order 0.1 mM due to
individual spikes (Fig. 6 a, lower panel) (Frankenhaeuser
and Hodgkin 1956). These spike perturbations disappear in
the reduced model, as they are smoothed-out by the
averaging in our model reduction procedure.

Within the RO, the reduced model predicts periodic
behavior with relatively large and slow oscillations in the
ion concentrations. Points 3–7 in Fig. 4 correspond to
Figs. 6b–f, which show various bursting behaviors of the
full model. To facilitate comparison, the time scale for these
figures (Fig. 6b–f) is the same, showing 100 s of data. In

4 A canard similar to that described previously occurs here, so that the
Hopf and the saddle-node bifurcations on the left sides of Figs. 3a and
b occur in extremely narrow intervals of the parameter.
5 In Fig. 3a, the equilibrium curve does not extend all the way to zero
because of the constant chloride leak current.
6 Note that oscillations may persist slightly outside of the RO, where a
stable periodic orbit coexists with the stable equilibrium solution; see,
for example, the right side of Fig. 3a.

Fig. 4 A two-dimensional bifurcation diagram showing the bound-
aries of the region of oscillation (RO) as a function of the diffusion
coefficient and the glial strength. The black curves denote Hopf
bifurcations; within this region, the ion concentrations exhibit
oscillatory behavior. The dashed lines correspond to the one-
dimensional bifurcation diagrams in Figs. 3b, c and 5 (see text).
Examples of the dynamics of the full model, obtained at parameter
values corresponding to the numbered points, are shown in Fig. 6
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addition, the voltage and concentration scales are also the
same, except for the concentration scale in (b). We make
the following observations from Fig. 6. As the RO is
traversed from low to high " (keeping Gglia fixed) in Fig. 4,
the bursts become more frequent (compare Fig. 6c, d;
points 4, 5 and Fig. 6e, f; points 6, 7). In addition, the shape
of the burst envelope changes due to the decreasing
amplitude of the [K]o oscillations. Note also in Fig. 6b
(point 3) that the peak of the [K]o concentration is nearly
40 mM, large enough to cause the neuron to briefly enter a
state of quiescence known as “depolarization block” (see
companion paper, Ullah, et al. 2009). Finally, the within-
burst spike frequency is essentially constant in Figs. 6b–f; it
does peak in concert with the peak of [K]o, however, this
effect is weak.

Returning briefly to the reduced model, we address in
Fig. 7 how the location of the RO changes with ko;1 as all
other parameters are kept at their normal values. As ko;1 is
increased from its normal value at 1, the RO emerges
around a value of ko;1 ¼ 1:77, as represented by the gray
line on the left of Fig. 7a. (This observation is consistent
with Rutecki et al. 1985). As ko;1 increases, the right edge
of the RO shifts towards the right, crossing the normal
values of " and Gglia at (1,1) when ko;1 ¼ 1:9, as shown by
the thick solid line in Fig. 7a. As ko;1 is further increased to
2.0, normal conditions for glial pumping and diffusion are
well inside the RO as shown in Fig. 7b, and correspond-
ingly, we observe bursting/seizing behavior in the full
model. Figure 7c shows the RO when the reservoir
concentration has been increased to 2.1. Here the left side
edge of the RO is just about to cross the point (1,1), after
which the ion concentrations assume stable equilibrium
values in the reduced model. Note that these stable
equilibria actually correspond to a state of rapid tonic firing
in the full model, as in Fig. 6a; for much higher values of
ko;1 (greater than approximately 7.2 mM), [K]o remains

constant in the reduced model, but the full model eventually
gives rise to depolarization block.

We conclude by reporting other kinds of bursting
behaviors seen in our full model. Figure 8a shows a time
trace of the membrane voltage for ko;1 ¼ 6, Gglia=0.1 and
" ¼ 0:4. These bursts are fundamentally different from
those shown in Fig. 6. In particular, the extracellular
potassium concentration is quite elevated, and thus the
periods of quiescence correspond not to resting behavior,
but rather to a state of depolarization block. In addition, the
bursts themselves have a rounded envelope, as opposed to
the (approximately) square envelopes of the events shown
in Fig. 6. This behavior is consistent with the experimental
observations of (Ziburkus et al. 2006), in which interneur-
ons were seen to enter depolarization block and thus give
way to pyramidal cell bursts. Bikson et al. also observed
depolarization block in pyramidal cells during electro-
graphic seizures (see Fig. 1d from Bikson et al. 2003).
We have also experimentally observed (in oriens interneur-
ons exposed to 4-aminopyridine) relatively continuous
“burst” firing without any quiescent intervals, as seen in
Fig. 8b. In this figure, the neuron fires continuously, but
with a wavy envelope due to the oscillating ion concen-
trations. We include these patterns to complete the
description of the repertoire of single cell bursting
behaviors seen in our models.

4 Discussion

We have created a model that can be used to investigate the
role of ion concentration dynamics in neuronal function, as
well as a reduced model which is amenable to bifurcation
analysis. Such bifurcations indicate major qualitative
changes in system behavior, which are in many ways more
predictive and informative than purely quantitative meas-
urements. In particular, we show that under otherwise
normal conditions, there exists a broad range of bath
potassium concentration values which yields seizure-like
behavior in a single neuron that is both qualitatively as well
as quantitatively similar to what is seen in experimental
models (Ziburkus et al. 2006; Feng and Durand 2006;
McBain 1994). In fact, the values of extracellular concen-
tration used in those experiments are quantitatively consis-
tent with the range of concentrations shown here to exhibit
seizures. Furthermore, the stable periodic oscillations in the
extracellular potassium concentration which result from
varying various experimentally and biophysically relevant
parameters suggests that these effects may be an important
mechanism underlying epileptic seizures.

In formulating our models, we made several approx-
imations. The two most severe, insatiable glial buffering
and the assumption that internal potassium can be calculat-

Fig. 5 The one-dimensional bifurcation diagram for [K]o as a
function of the normalized diffusion coefficient " for ko;1 ¼ 2:0
and Gglia ¼ 1:75
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ed using Eq. (3), should hold for times that are long
compared to the time scale of individual spikes, bursts, and
seizures. However, for even longer times (on the order of
thousands of seconds), the saturation of glia as well as the
decoupling of the internal potassium from the sodium
dynamics will lead to more substantial errors in the
calculated results. It is possible that glia do not fully

saturate, if, as suggested by Paulson and Newman (1987), the
glia siphon excess potassium into pericapillary spaces via the
astrocyte network. Nevertheless, one can understand a slow
partial saturation of the glial network as a slow decrease in
Gglia, for example. Consequently, the system may enter or
leave parameter-space regions in which oscillating ion
concentrations occur (e.g., see Figs. 3c and 4). This long-

Fig. 6 a–f Examples of the dynamics of the full model, obtained at parameter values corresponding to the numbered points in Fig. 4. The top
trace shows the membrane voltage and the lower traces show [K]o (solid trace) and [Na]i (dashed trace) on the same time scale
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term behavior could be used to more accurately model the
temporal dynamics of the glial siphoning system.

It is important to note the limitations of our models with
respect to extremely long time scales. If the reservoir
concentration ko;1 remains only slightly elevated for a long
period of time the model cell will ultimately reach a new
fixed point in [K]o nearly equal to the bath concentration. A
stable resting state should exhibit some degree of robust-
ness in its micro-environment. However, as the system
drifts further from the normal state, we should not expect
such homeostasis to persist; the internal potassium will in
general drift to higher or lower values depending on the
wide variety of pumps, cotransporters, or channels inherent

to the cell. When the internal potassium is integrated
separately (not shown here), we see both upward and
downward drift depending on model parameters as well as
the initial conditions for the ionic concentrations. Therefore
in our model the seizure-like events, as well as the tonic
firing reported here, appear to be transients on extremely
long time scales. Of course, such phenomena are also
transients on long time scales in animals and humans.

Although our reduced model does a good job reproduc-
ing the qualitative results of our full spiking model, there
are regions were the two models disagree. These two
models produce very good agreement in the region of the
two-parameter graph presented in Fig. 4. However the

Fig. 8 Other bursting patterns. Traces similar to those in Fig. 6 obtained with the full model for a ko;1 ¼ 6:0, Gglia ¼ 0:1, and " ¼ 0:4; and b
same, but with ko;1 reduced slightly. The quiescent states in (a) correspond to depolarization block; see text for further description

(a) (b) (c)

Fig. 7 The effect of changing the bath concentration on the location
of the region of oscillation (RO) is illustrated for r ¼ 1 and various
values of the bath potassium concentration ko;1. The square
represents normal values of the diffusion and glial strength. a The
RO is seen to appear and move to the right as the bath potassium

concentration is increased from ko;1 ¼ 1:77 (grey curve) to ko;1 ¼
1:9 (black curve), where it intersects the square (compare the left
bifurcation in Fig. 2). b The square lies within the RO for ko;1 ¼ 2:0.
c At ko;1 ¼ 2:1, the RO has moved further to the right, and the
square is close to the left boundary
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reduced model predicts the cessation of all oscillations as
Gglia is increased past a value of 4 (not shown), whereas the
full model exhibits burst-like oscillations for far greater
values. This discrepancy is due to the use of relatively
simple functions used in our fitting of the time-averaged
Hodgkin–Huxley currents (see Appendix). A more sophis-
ticated fit of these data would improve the agreement
between our two models.

Our work points out the important role that ion
concentration dynamics may play in understanding neuro-
nal dynamics, including pathological dynamics such as
seizures. Of course, in realistic situations, these are due to a
combination of local environmental conditions and electri-
cal and chemical communication between cells (see the
accompanying paper, Ullah, et al. 2009). The models
presented here, however, demonstrate that recurring sei-
zure-like events can occur in a single cell that is subject to
intra- and extracellular ion concentration dynamics (see
also discussion in (Kager et al. 2000, 2007) regarding
single-cell seizure dynamics). In addition, we have identi-
fied the basic mechanism that can give rise to such events:
Hopf bifurcations that lead to slow oscillations in the ion
concentrations.
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Appendix

Current to concentration conversion:

In order to derive the ion concentration dynamics, we begin
with the assumption that the ratio of the intracellular
volume to the extracellular volume is β=7.0 (Somjen
2004). This corresponds to a cell with intracellular and
extracellular space of 87.5% and 12.5% of the total volume
respectively. For the currents across the membrane, conser-
vation of ions requires

ΔciVoli ¼ �ΔcoVolo;

where c and Vol represent ion concentration and volume
respectively, Δ indicates change, and the subscripts i, o
correspond to the intra- and extracellular values. The above
equation leads to

Δci ¼ �Δco
Volo
Voli

� 	
¼ �Δco

b
:

Let I be the current density in units of μA/cm2 from the
Hodgkin–Huxley model. Then, the total current itotal=IA
entering the intracellular volume produces a flow of charge
equal to ΔQ= itotalΔt in a time Δt, where A is the

membrane area. The number of ions entering the volume
in this time is therefore ΔN= itotalΔt/q where q is 1.6×10−19

coul. The change in concentration Δci=ΔN/NAVoli depends
on the volume of the region to which the ions flow, where
Avogadro’s number NA converts the concentration to
molars. The rate of change of concentration, or concentra-
tion current dci/dt= ic,i, is related to the ratio of the surface
area of the cell to the volume of the cell as follows

ic;i ¼ Δci
Δt

¼ ΔN

ΔtVoliNA
¼ itotal

qVoliNA
¼ IA

qVoliNA
¼ I

a
:

For a sphere of radius 7 μm, α=21 mcoul/M cm2. An
increase in cell volume would result in a smaller time
constant and therefore slower dynamics.

For the outward current the external ion concentration is
therefore given as

ic;o ¼ bic;i ¼ bI
a

¼ 0:33I :

Equations for reduced model:

The reduced model uses empirical fits of the average
membrane currents of the Hodgkin-Huxley model neuron,
as described in the main text. The fits are given below.

IK1 ¼ aK g1g2g3 þ glKð Þ
INa1 ¼ aNa g1g2g3 þ glNað Þ
Ko=i¼ K½ �o

�
K½ �i

Nai=o¼ Na½ �i
�½Na�o

g1 ¼ 420:0 1� A1 1� B1exp �m1Nai=o
� �� �1=3� �

g2 ¼ exp s2ð1:0�l2Ko=iÞ
�ð1:0þ expð�m2Nai=oÞÞ

� �
g3 ¼ 1

.
1þ exp s3 1:0þm3Nai=o�l3Ko=i

� �� �� �5� �
g4 ¼ 1

.
1þ exp s4 1:0þm4Nai=o�l4Ko=i

� �� �� �5� �
glK¼ AlKexp �llKKo=i

� �
glNa¼ AlNa

where

aK ¼ 1:0;aNa ¼ 1:0;A1 ¼ 0:75;B1 ¼ 0:93;m1 ¼ 2:6;

l2 ¼ 7:41; s2 ¼ 2:0;m2 ¼ 2:6; s3¼ 35:7;

m3 ¼ 1:94; l3¼ 24:3;s4¼ 0:88;m4 ¼ 1:48; l4¼ 24:6;

AlNa ¼ 1:5;AlK ¼ 2:6; llK¼ 32:5
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