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Detecting Unstable Periodic Orbits in Chaotic Experimental Data
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A new method is proposed for detecting unstable periodic orbits and their linear stability properties
from chaotic experimental time series. lllustrative examples are presented for both numerically and
experimentally generated time series. The statistical significance of the results is assessed using
surrogate data. [S0031-9007(96)00488-7]
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Unstable periodic orbits embedded in chaotic attractor§see Fig. 1 for a geometrical interpretation of (1) and (2)
are fundamental to an understanding of chaotic dynamicgor the casek = 0]. In the case wheré = 0 and f(x)

For example, basic ergodic properties such as dimensiors a linear functionf(x) = x* + a(x — x¥), we have
Lyapunov exponents, and topological entropy can be des,(0) = « and%, = x* independent of.. Thus, in this
termined from periodic orbits. Moreover, the detection ofcase, all the data are transformed to the fixed point.

such an orbit from experimental data is a test for the pres- In the case of a general nonlinegftx) andk # 0, all
ence of determinism. A particularly important application points that lie in the linear region of the fixed poiritwill

is in the control of chaotic systems [1] where the first esbe transformed to the vicinity neaf. In particular, as
sential step is often the determination of periodic orbitsshown below, the density function fdr, denotedp (%),

For these reasons, detection of periodic orbits in experihas inverse square root type singularities at the fixed
mental data has become a central issue [2—4]. pointsp () ~ |& — x*|~/2. Thus if we plot a histogram

In this paper, we introduce new techniques for addressapproximation tgp (%) using a finite amount of data, then
ing this problem. Our method utilizes a transformationthere will be a sharp peak &t= x*. This is potentially
of the experimental time series data, such that the trans way of estimating the fixed points. By construction, the
formed series is concentrated on the periodic orbits. Histransformation in Egs. (1) and (2) utilizes all appropriate
tograms of the transformed data thus have sharp peaks abints in the linear region of a fixed point to form the
the locations of periodic orbits which can then be readsingularity. This is in contrast to typical “recurrence”
off. The reliability of the method can be objectively as- based methods (see Refs. [2-4]), in which one often
sessed by testing the statistical significance of these peakss to determine the appropriate ball size in phase space
against surrogate data that is random but preserves stati®- decide for close encounters. In practice, the degree of
tical properties of the original data [5]. clustering around the fixed point in our method depends

Although higher-dimensional cases are of most interest,
in order to get the ideas of our method across with the () 4
least technical complication, we first discuss in some de-
tail the case of a one-dimensional map. We also limit the
discussion to period one orbits (fixed points) [6,7]. Fol- Xn+2
lowing our one-dimensional map discussion, we then state
a result for higher dimensions (details appear in Ref. [7]). /
Using data generated from a noisy two-dimensional map,
we demonstrate the robustness of our method. Then we
apply it to data collected from an elastic mechanical ex-
periment [8].

To begin, assume we are given a finite length time
series from a one-dimensional mgjx), and we desire ’
to estimate the locations of the fixed points = f(x*).

Consider the transformation

s . _ FIG. 1. Geometric interpretation of Egs. (1) and (2) with
Xn [n+1 sn(k)x,]/[1 sn(K)], (1) k = 0. Given a sequence of poin{s,+s,x,+1,%.}, EQ. (2)
where [9] with k = 0 gives the slope of the hypotenuse of the shaded

triangle while Eq. (1) is the construction of the estimated fixed
sp(k) = (xn+2 = Xpn+1)/(xn+1 — X)) + k(x,+1 —x,) (2)  pointz, using the smaller cross-hatched triangle.
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on the size of the linear region and on how often a typical
trajectory visits the linear region [10].

To demonstrate the inverse square root singularities, we
write the transformation from to & as

& =gl k) =[f(x) = s(x,)x]/[1 = s(x,K)],  (3)

where s(x, k) =[f(f(x)) — f()]/Lf (x) — x]+ k[f (x) —
x]. Note that g(x*,k)=x" independentof k. If
p(x) denotes the distribution function fat, thenp (%) =
SE L pGi(@)g' WL,z where xi(&),i=1,....N,
denote the values af satisfyingx = g(x) and g’(x) =
dg/dx. We see thatp(x) will in principle be singular
at zeros ofg’ and at singularities op. Differentiating
g(x, k) with respect tax, one finds thag’ =0 at x values
for which f(x)=x (i.e., at fixed points). Thus near
x =x" we have by Taylor expansion that= g(x, k) = L AR e o i Aaaaan
x*+ Bx—x*? and |g/| T~ |x — x*|7 ~|& — x*|7V/2;
i.e., p(®)~1% —x*|7Y2. Thusp () is singular att = x*. X
However, we do not wish to mistake other potentialpig 2. (a) A histogram plot ofp (%) for the map f(x) =
singularities not due to fixed points with true fixed points.3.92x(1 —x). 5000 data points were used akd=0. (b) A
These spurious peaks result from singularitiep (@) and  histogram plot ofp (%)) averaged over 500 values bf where
from zeros ofg/(x) that occur atx values not at fixed *=5R.RE€[~1.1]. The number of data points used in (b)
points. To distinguish the spurious peaks, we note that'@s 100-
their locations depend on the paraméterOne method is
to randomly pick many differerk values for eackx value  we have 500 different calculatetd corresponding to the
and form the averagé (%)) of the resulting distributions 500 randomk values, we were able to reduce the number
p(%). Since the spurious peaks occur at differenalues  of data points used from 5000 to 100 without degrading
for eachk, the spurious peaks will be eliminated from the counting statistic in the histogram approximation of the
the averagép (%)) by smearing. Only the true peaks will averagep(%)). In Fig. 2(b), all spurious peaks are absent
remain sharply defined. and only the true fixed point peak &at= 0.745 remains.
Figure 2(a) showsp(x) obtained from 5000 iterates  The previous discussion on one-dimensional systems
of the logistic mapf(x) = rx(1 — x), with r =3.92 can be naturally extended to systems in higher dimen-
andk = 0. There are four sharp peaks, one at the truesions (see Ref. [7]). Here, we state a result and give
fixed point on the attractox[= (r — 1)/r = 0.745],two  an algorithm for the construction dfp(%)) in systems
at strong singularities ofp(x) located at the first and with arbitrary dimensions, for the example where the data
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second iterates of the critical point([f(1/2)) = 0.241
and £(f%(1/2)) = —0.0548], and one at a zero of’
that is not due to a fixed poingk (= 0.627). Figure 2(b)

shows the averagép (%)) calculated using 500 randomly

chosen values ok for each data poink. To generate
these randonk values, we sek = kR with R chosen

are delay coordinate vectofz,} reconstructed from a
scalar time serie$x,} (see Ref. [11]). With a properly
chosen embedding dimensiah z, = (z!,22,...,z9)f =
(Xn, Xn—1s---.xn—a+1)t. Here,z, is a column vector and
z! is the transpose of. With this notation, the transfor-
mation fromz to z is given byz,=1-S,) (2,4, —

randomly in[—1,1]andx = 5. Since for each data poin} S.z,), where

1 2
Sn:<an ay

-1
a

I -

1 1
a(d,l) ad (Zn - Zn—l)‘r n+l — 2y
" n +KR||Zn+1_zn”’ = ’
0 (z zy-a)t
n—(d—-1) = £n—d

R

1 _1
in—(d-2) = Zn—(d-1)

(4)

« is the magnitude of the randomization aRds ad X d | the local Jacobian matrix by collecting thg which give
random matrix with each element chosen independentlyalues of? in the cluster neat,, and then averaging the
with uniform distribution in[—1, 1] (other choices could corresponding, with « = 0.
be used). The norm in Eqg. (4) is chosen to be ihe Although ideally one should expect inverse square root
norm,||z|| = ;’:1 |Z]. singularities inz at the locations of the fixed points, in
To find the possible fixed points from our data, wea real experimental setting, these singularities are blurred
again look for peaks inp(2)). In addition, for each by small noise into maxima, and can even be completely
identified peakz,, we can simply obtain and estimate washed out by large noise. We can use the technique of
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surrogate data [5] to assess the reliability of the observer 1.0+ @
peaks. That is, we can produce a truly stochastic time se 0.8

ries (surrogate data) with similar statistical properties to the 0.6

original (supposedly deterministic) data, and then compart 0.4

the results of applying our periodic orbit detection method oo

to the original data set and to the surrogate. Since the 0'0 l
surrogate data are random, we do not expect any nonline: T 0 10 20
fixed point structure that may be present in the original date 2 1.04 ©
to survive. Most importantly, using many different real- 5 121 0.8+

izations of the surrogate data, we can estimate the statist & ¢ | g 0.6

cal probability that the observed peaks in our experimenta ;% M 0.4

(p(2)) could arise from a linear stochastic process modelec § 0.2

by the surrogates. Numerically, for each realization of thel¥ |, . 00l : i
surrogate data, we apply the same procedure for calcula 0 5
ing (psur(2)) as for our experimental data. A mean value 1.0+ ®
P (2) can be estimated from this collection{@ps.: (2))}. 0.8

Similar to our noisy experimental daig,, (Z)) from each 0.6

individual realization of the surrogates will fluctuate, and 0.4

will consequently have fluctuation peaks which deviate 0.2

from the meanp,,. (). Denote the deviation from the 1 00

mean for a given surrogate by(z) = (pur(2)) = P (2) R
and letW = max[w(2)]. Using many surrogates we can W

determine the fractio& (W’) of surrogates with maximum . o .
deviatic_)nsW exceeding¥’. This gives an estimate of the r?ghzg'(a) |:|sio%|;ra?t1))plgts=o§ﬁ(sz>)<> ((S;gg?ugurovfesgnfgcttgf);lkggg
probability thatW exceeds¥’ for any chosen surrogate. (c)'e = 0.5x (radius of attractor). The dashed curves are

To demonstrate the robustness of our method in @e corresponding, (2). 1024 data points were usedi(*
noisy situation, we use the lkeda map with additivedifferent random matrices were used for each data point, and
observational nose [12], The lkeda map descrbes thg %, 0) ) wud.(, e Weogiam poe SOV e,
dynamics of a nonlinear optical cavity and is given by thebetweenv(;)> andz.. (2)

. . pP\Z Pur'?).
two-dimensional map (u,+1 =1.0+ a(u, cos, —
v, sint,), v,+1 = a(u, sint, + v, c0s,)), Where ¢,= from the 20 surrogates is unobservably sma#10 ).
04—5b/(1+u?>+v?). With a=0.9 andb = 6.0, this  As the amount of noise increases [Figs. 3(b) and 3(e)], the
system has a chaotic attractor with a Lyapunov dimensiopeak at the fixed point broadens. However, its deviation
of approximately 1.71, and it has an unstable fixed point aabove the surrogate medi (~ 6) is still significant. The
(u*,v*)=1(0.53,0.25). To generate the noisy time series probability of finding a peak with the same large deviation
for our numerical experiment, we choosg= u, + €4, in the surrogates is still unobservably small. In the last
to be our scalar output. The delay coordinate vector ircase with 50% noise [Figs. 3(c) and 3(f)], the distinctive-
two dimensions is then given by, = (0,,0,-1)T. Here, ness of the peak in the solid curve disappears and the max-
€ is the magnitude of the external noise af®)} is a imum deviation observed in the data has an approximately
uniformly distributed random variable [n-1, 1]. 5% probability to be found in the surrogates.

Figure 3 corresponds to our results with three different We also applied our method to an experimental time
noise levels: (a§ = 0; (b) e ~ 15% of the radius of the at- series from a periodically driven, gravitationally buckled,
tractor; (c)e ~ 50% of the radius of the attractor. The solid amorphous magnetoelastic ribbon. Th& data points
curves give the histogram approximations{f2)) and used are the measured curvature of the ribbon at its base
the dashed curves are the corresponding surrogate averagesnpled at the period of the drive (see Ditto, Rauseo,
P (2). To quantify the statistical significance of the de-and Spano, Ref. [15], for details on this experiment).
viations between the data and the surrogate mean, we plothe inset of Fig. 4(a) is a section of the time series
ted the distributioriE(W) in Figs. 3(d), 3(e), and 3(f) with used. The dimension of the experimental attractor is
the arrows indicating the locations of the observed maxiapproximately 1.2 but in order to unfold all the crossings,
mum deviations. In all these calculations, the time serieshe data have to be embedded in a three-dimensional delay
data were delay embedded in a two-dimensional space, Zpace. In the process of randomization, we again used
surrogates were used and in the process of randomizatiof)0 different random matrices for each data point and
we have used0* different random matrices for each data x was 15 [14]. The histogram fofp(2)) is plotted in
point [13] andx was 5 [14]. In Fig. 3(a), the fixed point Fig. 4(a) as a solid curve and the surrogate mggp(2)
atZ = 0.53 has a strong peak rising sharply above the suris plotted as a dashed curve. The dominant fixed point
rogates mean. As indicated by the arrow in Fig. 3(d), theés located at approximately 5.40 [16]. Again, using 20
probability for observing such a large deviatidii -20)  surrogates, we calculated the distributigitw), and we

4707



VOLUME 76, NUMBER 25

PHYSICAL REVIEW LETTERS

17JNE 1996

é 6.5
E 6.0
£ 55
£ . . :
< 0 200 40 n
&
< \\«*\‘\‘1
6.0 6.5
AN
VA
n |
OO T 1““*_ T T T
0 5 W 10 15
FIG. 4. (a) A histogram plot of(5(2)) (solid curve) for

magnetoelastic ribbon data. 1024 data points were uH#d,

(3]

[4]
[5]

different random matrices were used for each data point, and

k = 15. The dashed curve correspondsdg,(z). Insetis a

section of the actual time series data; (b) is a histogram plot

of E(W). Arrow indicates the value of maximum deviation
between( (2)) andp,,(2).

plotted its approximation in Fig. 4(b). The arrow indicates
the location of the maximum deviation calculated at the

[6]

fixed point and the probability for observing this value [7]
in the surrogates is again unobservably small. At this [8]
fixed point, the eigenvalues of the estimated Jacobian

matrix (average 08,) gives an expansion rate (Lyapunov

number) of 8.51£3.47) per time unit and a contraction
rate (Lyapunov number) of 0.749(.118) per time unit.

In this Letter, we present a statistical method to deq1q

9]

tect unstable periodic orbits from a chaotic data set. The
method utilizes the linear dynamics around an unstable pe-

riodic point to produce a statistical measure which, in the-
ory, is singular at the periodic point. By construction, all
points that lie within the linear regions of the periodic or- [11]
bits are utilized. There is no need to search for an optimal

neighborhood size as in other “recurrence” methods. Us-

ing this method, unstable fixed points were reliably identi-
fied in noisy numerically generated data as well as in real
experimental data from a magnetoelastic ribbon system. 12]
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