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Detecting Unstable Periodic Orbits in Chaotic Experimental Data
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A new method is proposed for detecting unstable periodic orbits and their linear stability propertie
from chaotic experimental time series. Illustrative examples are presented for both numerically a
experimentally generated time series. The statistical significance of the results is assessed u
surrogate data. [S0031-9007(96)00488-7]
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Unstable periodic orbits embedded in chaotic attrac
are fundamental to an understanding of chaotic dynam
For example, basic ergodic properties such as dimens
Lyapunov exponents, and topological entropy can be
termined from periodic orbits. Moreover, the detection
such an orbit from experimental data is a test for the p
ence of determinism. A particularly important applicati
is in the control of chaotic systems [1] where the first
sential step is often the determination of periodic orb
For these reasons, detection of periodic orbits in exp
mental data has become a central issue [2–4].

In this paper, we introduce new techniques for addre
ing this problem. Our method utilizes a transformati
of the experimental time series data, such that the tr
formed series is concentrated on the periodic orbits. H
tograms of the transformed data thus have sharp pea
the locations of periodic orbits which can then be re
off. The reliability of the method can be objectively a
sessed by testing the statistical significance of these p
against surrogate data that is random but preserves s
tical properties of the original data [5].

Although higher-dimensional cases are of most inter
in order to get the ideas of our method across with
least technical complication, we first discuss in some
tail the case of a one-dimensional map. We also limit
discussion to period one orbits (fixed points) [6,7]. F
lowing our one-dimensional map discussion, we then s
a result for higher dimensions (details appear in Ref. [
Using data generated from a noisy two-dimensional m
we demonstrate the robustness of our method. Then
apply it to data collected from an elastic mechanical
periment [8].

To begin, assume we are given a finite length ti
series from a one-dimensional mapfsxd, and we desire
to estimate the locations of the fixed pointsxp ­ fsxpd.
Consider the transformation

x̂n ­ fxn11 2 snskdxngyf1 2 snskdg , (1)

where [9]

snskd ­ sxn12 2 xn11dysxn11 2 xnd 1 ksxn11 2 xnd (2)
0031-9007y96y76(25)y4705(4)$10.00
s
s.
n,
-

-

-
.
i-

-

s-
-
at

ks
is-

[see Fig. 1 for a geometrical interpretation of (1) and
for the casek ­ 0]. In the case wherek ­ 0 and fsxd
is a linear functionfsxd ­ xp 1 asx 2 xpd, we have
sns0d ; a and x̂n ; xp independent ofn. Thus, in this
case, all the data are transformed to the fixed point.

In the case of a general nonlinearfsxd and k fi 0, all
points that lie in the linear region of the fixed pointxp will
be transformed to the vicinity nearxp. In particular, as
shown below, the density function for̂x, denotedr̂sx̂d,
has inverse square root type singularities at the fi
pointsr̂sx̂d , jx̂ 2 xpj21y2. Thus if we plot a histogram
approximation tor̂sx̂d using a finite amount of data, the
there will be a sharp peak atx̂ ­ xp. This is potentially
a way of estimating the fixed points. By construction, t
transformation in Eqs. (1) and (2) utilizes all appropria
points in the linear region of a fixed point to form th
singularity. This is in contrast to typical “recurrence
based methods (see Refs. [2–4]), in which one of
has to determine the appropriate ball size in phase sp
to decide for close encounters. In practice, the degre
clustering around the fixed point in our method depen
st,
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FIG. 1. Geometric interpretation of Eqs. (1) and (2) wi
k ­ 0. Given a sequence of pointshxn12, xn11, xnj, Eq. (2)
with k ­ 0 gives the slope of the hypotenuse of the shad
triangle while Eq. (1) is the construction of the estimated fix
point x̂n using the smaller cross-hatched triangle.
© 1996 The American Physical Society 4705
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on the size of the linear region and on how often a typ
trajectory visits the linear region [10].

To demonstrate the inverse square root singularities
write the transformation fromx to x̂ as

x̂ ­ gsx, kd ­ ffsxd 2 ssx, kdxgyf1 2 ssx, kdg , (3)

where ssx, kd ­ ffsssfsxdddd 2 fsxdgyffsxd 2 xg 1 kffsxd 2

xg. Note that gsxp, kd ­ xp independent of k. If
rsxd denotes the distribution function forx, thenr̂sx̂d ­PN

i­1 rsssxisx̂ddddjg0sxdj21
x­xi sx̂d, where xisx̂d, i ­ 1, . . . , N ,

denote the values ofx satisfying x̂ ­ gsxd and g0sxd ;
dgydx. We see thatr̂sx̂d will in principle be singular
at zeros ofg0 and at singularities ofr. Differentiating
gsx, kd with respect tox, one finds thatg0 ­ 0 at x values
for which fsxd ­ x (i.e., at fixed points). Thus nea
x ­ xp we have by Taylor expansion thatx̂ ­ gsx, kd >
xp 1 bsx 2 xpd2 and jg0j21 , jx 2 xpj21 , jx̂ 2 xpj21y2;
i.e., r̂sx̂d , jx̂ 2 xpj21y2. Thusr̂sx̂d is singular at̂x ­ xp.

However, we do not wish to mistake other poten
singularities not due to fixed points with true fixed poin
These spurious peaks result from singularities inrsxd and
from zeros ofg0sxd that occur atx values not at fixed
points. To distinguish the spurious peaks, we note
their locations depend on the parameterk. One method is
to randomly pick many differentk values for eachx value
and form the averagekr̂sx̂dl of the resulting distributions
r̂sx̂d. Since the spurious peaks occur at differentx̂ values
for eachk, the spurious peaks will be eliminated fro
the averagekr̂sx̂dl by smearing. Only the true peaks w
remain sharply defined.

Figure 2(a) showsr̂sx̂d obtained from 5000 iterate
of the logistic mapfsxd ­ rxs1 2 xd, with r ­ 3.92
and k ­ 0. There are four sharp peaks, one at the t
fixed point on the attractor [x ­ sr 2 1dyr > 0.745], two
at strong singularities ofrsxd located at the first an
second iterates of the critical point [x̂sssfs1y2dddd ­ 0.241
and x̂sssf2s1y2dddd ­ 20.0548], and one at a zero ofg0

that is not due to a fixed point (x̂ ­ 0.627). Figure 2(b)
shows the averagekr̂sx̂dl calculated using 500 random
chosen values ofk for each data pointx. To generate
these randomk values, we setk ­ kR with R chosen
randomly inf21, 1g andk ­ 5. Since for each data poin
nt
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FIG. 2. (a) A histogram plot ofr̂sx̂d for the map fsxd ­
3.92xs1 2 xd. 5000 data points were used andk ­ 0. (b) A
histogram plot ofkr̂sx̂dl averaged over 500 values ofk, where
k ­ 5R, R [ f21, 1g. The number of data points used in (
was 100.

we have 500 different calculated̂x corresponding to the
500 randomk values, we were able to reduce the numb
of data points used from 5000 to 100 without degrad
the counting statistic in the histogram approximation of
averagekr̂sx̂dl. In Fig. 2(b), all spurious peaks are abse
and only the true fixed point peak atx̂ ­ 0.745 remains.

The previous discussion on one-dimensional syste
can be naturally extended to systems in higher dim
sions (see Ref. [7]). Here, we state a result and g
an algorithm for the construction ofkr̂sx̂dl in systems
with arbitrary dimensions, for the example where the d
are delay coordinate vectorshznj reconstructed from a
scalar time serieshxnj (see Ref. [11]). With a properly
chosen embedding dimensiond, zn ­ sz1

n, z2
n, . . . , zd

n dy ;
sxn, xn21, . . . , xn2d11dy. Here,zn is a column vector and
zy is the transpose ofz. With this notation, the transfor
mation fromz to ẑ is given by ẑn ­ s1 2 Snd21szn11 2

Snznd, where
Sn ­

√
a1

n a2
n · · · a

sd21d
n ad

n
1 0

!
1 kRkzn11 2 znk,

0BB@ a1
n
...

ad
n

1CCA ­

0BB@ szn 2 zn21dy

...
szn2sd21d 2 zn2ddy

1CCA
21

0BBB@
z1

n11 2 z1
n

...
z1

n2sd22d 2 z1
n2sd21d

1CCCA,

(4)
l

ot

red
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of
k is the magnitude of the randomization andR is ad 3 d
random matrix with each element chosen independe
with uniform distribution inf21, 1g (other choices could
be used). The norm in Eq. (4) is chosen to be theL1

norm,kzk ­
Pd

i­1 jzij.
To find the possible fixed points from our data, w

again look for peaks inkr̂sẑdl. In addition, for each
identified peakẑ0, we can simply obtain and estima
y
the local Jacobian matrix by collecting thezn which give
values ofẑ in the cluster near̂z0, and then averaging the
correspondingSn with k ­ 0.

Although ideally one should expect inverse square ro
singularities inẑ at the locations of the fixed points, in
a real experimental setting, these singularities are blur
by small noise into maxima, and can even be complet
washed out by large noise. We can use the technique
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surrogate data [5] to assess the reliability of the observ
peaks. That is, we can produce a truly stochastic time
ries (surrogate data) with similar statistical properties to t
original (supposedly deterministic) data, and then comp
the results of applying our periodic orbit detection metho
to the original data set and to the surrogate. Since
surrogate data are random, we do not expect any nonlin
fixed point structure that may be present in the original da
to survive. Most importantly, using many different rea
izations of the surrogate data, we can estimate the stat
cal probability that the observed peaks in our experimen
kr̂sẑdl could arise from a linear stochastic process mode
by the surrogates. Numerically, for each realization of t
surrogate data, we apply the same procedure for calcu
ing kr̂sursẑdl as for our experimental data. A mean valu
rsur sẑd can be estimated from this collection ofhkr̂sur sẑdlj.
Similar to our noisy experimental data,kr̂sur sẑdl from each
individual realization of the surrogates will fluctuate, an
will consequently have fluctuation peaks which devia
from the meanrsur sẑd. Denote the deviation from the
mean for a given surrogate bywsẑd ­ kr̂sursẑdl 2 rsursẑd
and letW ­ max̂zfwsẑdg. Using many surrogates we ca
determine the fractionJsW 0d of surrogates with maximum
deviationsW exceedingW 0. This gives an estimate of the
probability thatW exceedsW 0 for any chosen surrogate.

To demonstrate the robustness of our method in
noisy situation, we use the Ikeda map with additiv
observational noise [12]. The Ikeda map describes
dynamics of a nonlinear optical cavity and is given by th
two-dimensional map sssun11 ­ 1.0 1 asun costn 2

yn sintnd, yn11 ­ asun sintn 1 yn costndddd, where tn ­
0.4 2 bys1 1 u2

n 1 y2
nd. With a ­ 0.9 and b ­ 6.0, this

system has a chaotic attractor with a Lyapunov dimens
of approximately 1.71, and it has an unstable fixed point
sup, ypd ­ s0.53, 0.25d. To generate the noisy time serie
for our numerical experiment, we chooseon ­ un 1 edn

to be our scalar output. The delay coordinate vector
two dimensions is then given byzn ; son, on21dy. Here,
e is the magnitude of the external noise andhdnj is a
uniformly distributed random variable inf21, 1g.

Figure 3 corresponds to our results with three differe
noise levels: (a)e ­ 0; (b) e , 15% of the radius of the at-
tractor; (c)e , 50% of the radius of the attractor. The solid
curves give the histogram approximations tokr̂sẑdl and
the dashed curves are the corresponding surrogate aver
rsur s ¯̂zd. To quantify the statistical significance of the de
viations between the data and the surrogate mean, we p
ted the distributionJsW d in Figs. 3(d), 3(e), and 3(f) with
the arrows indicating the locations of the observed ma
mum deviations. In all these calculations, the time ser
data were delay embedded in a two-dimensional space
surrogates were used and in the process of randomizat
we have used104 different random matrices for each dat
point [13] andk was 5 [14]. In Fig. 3(a), the fixed point
at ẑ ­ 0.53 has a strong peak rising sharply above the s
rogates mean. As indicated by the arrow in Fig. 3(d), t
probability for observing such a large deviation (W , 20)
d
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FIG. 3. Histogram plots ofkr̂sẑdl (solid curves) for the Ikeda
map: (a) e ­ 0; (b) e ­ 0.153 (radius of attractor); and
(c) e ­ 0.53 (radius of attractor). The dashed curves a
the correspondingrsur sẑd. 1024 data points were used,104

different random matrices were used for each data point,
k ­ 5. (d), (e), and (f) are histogram plots ofJsW d in the
three cases. Arrows indicate the values of maximum deviati
betweenkr̂sẑdl andrsur sẑd.

from the 20 surrogates is unobservably small (ø1025).
As the amount of noise increases [Figs. 3(b) and 3(e)],
peak at the fixed point broadens. However, its deviat
above the surrogate mean (W , 6) is still significant. The
probability of finding a peak with the same large deviati
in the surrogates is still unobservably small. In the la
case with 50% noise [Figs. 3(c) and 3(f)], the distinctiv
ness of the peak in the solid curve disappears and the m
imum deviation observed in the data has an approxima
5% probability to be found in the surrogates.

We also applied our method to an experimental tim
series from a periodically driven, gravitationally buckle
amorphous magnetoelastic ribbon. The103 data points
used are the measured curvature of the ribbon at its b
sampled at the period of the drive (see Ditto, Raus
and Spano, Ref. [15], for details on this experimen
The inset of Fig. 4(a) is a section of the time seri
used. The dimension of the experimental attractor
approximately 1.2 but in order to unfold all the crossing
the data have to be embedded in a three-dimensional d
space. In the process of randomization, we again u
500 different random matrices for each data point a
k was 15 [14]. The histogram forkr̂sẑdl is plotted in
Fig. 4(a) as a solid curve and the surrogate meanrsursẑd
is plotted as a dashed curve. The dominant fixed po
is located at approximately 5.40 [16]. Again, using 2
surrogates, we calculated the distributionJsW d, and we
4707
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FIG. 4. (a) A histogram plot ofkr̂sẑdl (solid curve) for
magnetoelastic ribbon data. 1024 data points were used,104

different random matrices were used for each data point,
k ­ 15. The dashed curve corresponds torsur sẑd. Inset is a
section of the actual time series data; (b) is a histogram
of JsW d. Arrow indicates the value of maximum deviatio
betweenkr̂sẑdl andrsur sẑd.

plotted its approximation in Fig. 4(b). The arrow indicat
the location of the maximum deviation calculated at
fixed point and the probability for observing this val
in the surrogates is again unobservably small. At t
fixed point, the eigenvalues of the estimated Jacob
matrix (average ofSn) gives an expansion rate (Lyapuno
number) of 8.51(63.47) per time unit and a contractio
rate (Lyapunov number) of 0.749(60.118) per time unit.

In this Letter, we present a statistical method to
tect unstable periodic orbits from a chaotic data set.
method utilizes the linear dynamics around an unstable
riodic point to produce a statistical measure which, in t
ory, is singular at the periodic point. By construction,
points that lie within the linear regions of the periodic o
bits are utilized. There is no need to search for an opti
neighborhood size as in other “recurrence” methods.
ing this method, unstable fixed points were reliably iden
fied in noisy numerically generated data as well as in
experimental data from a magnetoelastic ribbon system
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