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Analytical coupling detection in the presence of noise and nonlinearity
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A rigorous analytical approach is developed to test for the existence of a continuous nonlinear functional
relationship between systems. We compare the application of this nonlinear local technique to the existing
analytical linear global approach in the setting of increasing additive noise. For natural systems with unknown
levels of noise and nonlinearity, we propose a general framework for detecting coupling. Lastly, we demon-
strate the applicability of this method to detect coupling between simultaneous, experimentally measured,
intracellular voltages between neurons within a mammalian neuronal network.
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Faced with an experimental system whose equations
unknown, it is often important to determine when comp
nents of the system are coupled. An example of current
terest is the behavior of neural systems. We now unders
that many neural cognitive phenomena, from insects@1# to
mammals@2#, correspond to computations performed in tra
siently synchronous ensembles of neurons. But in orde
define such functional ensembles, one must first determ
whether the neurons are coupled.

Neural systems are examples of natural systems where
elements are highly nonlinear, and beset with an indeter
nate amount of noise. We expect that all natural systems
present two types of impediments to detection of coupli
noise and nonlinearity. We introduce here the idea that th
are two approaches to coupling detection, each of which
well suited to particular balances of noise and nonlinearity
the balance is unknown, neither approach alone can be re
upon to detect coupling.

Cross correlation and continuity are examples of statis
suited to extreme cases of the balance between noise
nonlinearity. For instance, cross correlation probes glob
for the simplest functional relation, linear, and is the m
tolerant to noise. Noise tolerance comes from the linear
ture of the assumed functional form which allows add
noise to separate from the signal and average to zero. C
correlation is well developed, and analytic estimates of s
nificance for the statistic exist@3# obviating the need for
bootstrap numerical testing@4#. Figure 1 schematically illus-
trates our present view of coupling detection. Unfortunate
in many experimental situations we do not know whi
quadrant from Fig. 1 is appropriate.

Continuity makes few assumptions about the nature o
underlying functional relationship, asking only whether
small region of data about a system state point from
system maps to a corresponding small region about a sim
system state point in another system@5,6#. Continuity is thus
a local property requiring minimal knowledge of the loc
structure of a function~e.g., no Jacobian must be accurate
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fit @7#!. Nonlinear measures of synchronization and pred
tion have recently been developed, which are capable of
tecting coupling between nonlinear systems when lin
methods fail. Previous work with spinal cord motoneuro
were consistent with the usefulness of nonlinear method
identify certain neuronal interactions@8#. Nevertheless, a
continuity measure underlies many of the recent approac
including prediction at zero time, mutual nearest neighbo
and mutual variance@8,9#. Importantly, continuity is an
asymmetric property, and can be implemented to distingu
directionality of coupling@5#.

We show here that, like cross correlation, we can pu
continuity statistic and its associated significance in an a
lytical setting that eliminates the need for extensive num
cal work to support the results. Previous attempts to quan
such measures have not dealt with the independence
sampled neighborhoods rigorously@5#, or have resorted to
bootstrap methods in order to establish the significance
continuity @8#.

The continuity of a function relating multivariate data se
X and Y is quantified using local measures of continu
about selected fiduciary pointsxi . The multivariate data can
be simultaneous measurements of several variables or, in
examples, delay reconstructions from time series. Withi
distanced from xi we can collect theni

d nearest neighbors to

FIG. 1. Schematic of balance of noise vs nonlinearity, and
timal coupling detection schemes. In low noise, nonlinear meth
have an advantage over linear methods for nonlinear systems.
ear methods are well suited to noisy linear systems. It is unkno
how noise affects detection for highly nonlinear systems. For d
from many natural systems, the quadrant is unknowna priori.
©2004 The American Physical Society01-1
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xi . Thexi point has a corresponding time indexed pointyi in
theY data set. Within a distancee from yi will be ni

« nearest
neighbors ofyi . For each fiducial point pair (xi ,yi), a count
mi of the subset ofni

d points that have corresponding tim
indexed points withinni

« are determined.
Under the null hypothesis that there is no functional re

tionship between the two data sets, the nearest neighborsd
will be no more likely to map intoe than if they had been
chosen randomly fromX. This can be thought of as a class
‘‘urn’’ problem @10#, where all of the points in thed set are
red and the rest of theX points are blue. If a continuou
function exists relatingX andY, given ane there will always
be ad where all red points are withine. Since we are dealing
with real data rather than analytical functions, we relax
strict definition and allowmi<ni

d to be the number of red
balls in thee set.

Under the null hypothesis, points are randomly mapp
from X to Y, and a handfulni

« are selected fromY without
replacement. The number ofmi points inni

« should therefore
fall under the hypergeometric distributionh(kund ,n« ,N)
5(k

nd)(n«2k
N-nd )/(n«

N ) @10#, where (B
A) is the binomial coefficient.

The probability thatk points fromni
d map intoe is equal to

the number of combinations ofk points that could have

mapped intoe, (k
nd

), multiplied by the number of combina
tions of points from outsided that could have mapped intoe,

(n«2k
N2nd

), divided by the total number of combinations ofni
«

points that could have been selected, (n«
N ).

We want to estimate the probability thatmi or fewer
points fromd map intoe by chance. This probability is the
sum of the cumulative hypergeometric function fork
50, . . . ,mi hcum(mund ,n« ,N)5(k50

mi h(kund ,n« ,N).
We define significant fiduciary points as those wherehcum

suggests thatmi are significant. Global continuity is the
evaluated by counting the number of significant fiducia
points, Nsig . The significance limit may be estimated b
m* 5min$miuhcum(miund ,n« ,N).0.95% ~for fixed nd and n«),
which sets a thresholdm* , the probability of which is the
smallest integer value for whichmi is expected to occur with
probability greater than 0.95. For a givenm* the correspond-
ing p* 5P(mi.m* )512hcum(m* und ,n« ,N) is the prob-
ability that more points thanm* will map from d into e,
which will be less than probability 0.05. The count of th
number of fiducial points at whichmi.m* we callNsig . To
quantify the significance of the global continuity, we use t
cumulative binomial distribution to determine the probabil
that the number of points that reached significance,Nsig ,
might have done so at random@10#, bcum(NsiguNf ,p* )
5( r 50

Nsig@Nf !/ r !(Nf2r )! #p
*
r (12p* )Nf2r , using the given

p* and Nf ~number of fiduciary points!. If the cumulative
binomial statistic is larger than 0.95, then we can reject
null hypothesis that the two data sets are uncoupled.

Using the hypergeometric function and the binomial d
tribution assumes that the fiduciary points and their nei
bors must be independent, implying that the local neighb
hoods cannot overlap. Overlapping the neighborho
around the fiduciary points would result in larger numbers
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significant fiduciary points than would be anticipated by t
binomial statistic. To prevent overlap the state space is
sellated into regions with equal numbers of points. Tesse
tion is performed by finding the first principal component
the entire data set~the direction for which most variance i
the data is observed!, projecting and rank ordering the poin
onto the first principal component, and tesselating the d
set at the median point. Each of the two resulting regions
then similarly tessellated by finding the first principal com
ponents of each region and subdividing at their medians.
fiducial points were selected as the points closest to the g
metric center of each tessellation. The method is there
independent of inhomogeneities in the geometrical distri
tion of points.

Such a measure of continuity is dependent upon the
lection of neighborhood sizesnd and n«. Without a priori
knowledge of the data set’s underlying dynamics or noise
range ofnd andn« are examined for a range of embeddin
dimensions.

Unidirectionally coupled He´non maps were used to te
the sensitivity of the continuity measure:Y(t11)
51.42Y(t)210.3Y(t21),X(t11)51.42@CY(t)1(12C)
X(t)#X(t)10.3X(t21), whereC sets the coupling strength
The top panel of Fig. 2 shows raw data for weak couplin
C50.02, after discarding the first 1000 transient points w
discarded and the subsequent 8000 iterations used for a
sis ~top panel, Fig. 2!. The second panel shows cross cor
lation with the Bartlet estimator@3# indicated as a 95% con
fidence limit~second panel!. One would expect no more tha
5% of the cross correlation values to be greater than
confidence interval by chance, and the data in this fig
suggest no significant linear cross correlation.

The next panels in Fig. 2 illustrate how a small region
points labeledd in the drive system~third panel left! maps to
the correspondingly indexed points in the response sys
~third panel right!. The tessellation of the He´non system is
illustrated in the driver data~third panel left of Fig. 2!. Such
tessellation was applied to the drive system until sev
points remained within each tessellation, following whi
the most central points within the drive system were selec
as fiducial, and the corresponding time indexed points in
response system were identified as fiducial. Thee regions of
the response system were selected as nearest neighbors
these response fiducial points. The probabilities associ
with both forward drive-to-response and reverse response
drive mappings were determined, by alternately selecting
driver or response system to be tessellated.

The bottom panel of Fig. 2 illustrates the result of t
continuity statistic. Significant continuity is not identified fo
the drive-to-response system, as anticipated in the weak
pling regime. Nevertheless, there is significant continu
identified from the response to the drive system. In a un
rectional drive-response system, the response system a
finite coupling strengths always contains information and
significant mapping from response to drive. In such syste
the appearance of a functional relationship from drive to
sponse is seen only at higher coupling strengths at the o
of generalized synchronization.
1-2
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The response of these two methods, cross correlation
continuity, as a function of additive noise is instructive. F
ure 3 shows a comparison of sensitivity of the methods
coupled He´non maps with four levels of Gaussian additi
noise: 0, 0.125, 0.25, and 0.5 standard deviationss of the
amplitude distribution measured from the drive and respo
data set respectively. Without additive noise, the continu
measure is far more sensitive to weak coupling in this sys
than is cross correlation~we note the solitary case of poo
continuity detection for zero noise at very weak couplin!.
However, as noise increases, cross correlation becom
more robust determinate of coupling in this nonlinear s
tem.

To demonstrate whether two ensembles of neurons f
the brain are coupled, we record from simultaneously

FIG. 2. Weakly coupled He´non systems, with raw data from
drive and response time series in upper panel. Second panel s
cross correlation, with 95% confidence intervals~Bartlett! indicated
as solid lines. Third panel shows tessellation of driver He´non sys-
tem, and ad region is indicated. Points from thed region mapped
to dark circles within the response system~right!, and a fraction of
these points fall within thee region indicated. Lower panel show
continuity results with probability indicated as gray scale, dark
ing highly significant. Since we perform 64 separate comparis
for eight levels ofd ande, we set the joint probability that none o
the 64 comparisons were significant at 0.955(0.9992)64. We as-
sume thate will in general be larger thand, and therefore only
calculate values above the diagonal line.
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paled neurons within a live neuronal network, each fro
within separate neighborhoods of neurons. We turn off
spike generating mechanism in the impaled neurons in o
to use them as receivers of inputs from their respec
neighborhoods, then test whether the received signals
related. Rat brain slices were prepared as in Ref.@11#. Simul-
taneous intracellular voltage measurements from two n
rons were recorded using whole cell patch clamp. Act
potentials were suppressed by hyperpolarizing, permitt
accurate measurement of the input synaptic currents. C
pling was measured under two conditions that altered
functional relationship between the neurons: slices bathe
normal (3.5 mM @K1#) versus mildly elevated potassium
concentration (5.5 mM @K1#). This elevation in extracellular
potassium causes a small increase in neuronal coupling@11#.

Figure 4 illustrates the voltage recordings from two ne
rons as a function of low and high@K1#. Time delay embed-
ding lags were determined from the decay of the mut
information between the embedded time series as a func
of lag @12#. Lag selected was the minimum integer val
causing decay of the mutual information to 1/e of its value at
0 lag. Without knowledge of the underlying dynamics of t
neuronal data, we tested for continuity at a range of emb
ding dimensionsd showing data ford51, 2, and 3 in the
figure.

The low@K1# condition is associated with no evidence
substantial coupling, in either cross correlation or continu
~Fig. 4, left!. At the higher@K1# level, these neurons ar
more heavily coupled within the network, and cross corre
tion is significant~Fig. 4, right!. In addition, continuity in
elevated@K1#, both forward and inverse, is significant atd
51 and 3~Fig. 4, right!. In this neuronal network, we do no
know ~and cannot determine! the full nature of functional
relationship between the neurons. Nevertheless, our find
of significant continuity establishes that these two neur
are functionally related, implying a common dynamical lin

An unknown balance between noise and nonlinea
in systems where an accurate model of the underlying eq
tions is lacking may render it impossible to rely upon eith

ws

-
s

FIG. 3. Sensitivity of cross correlation vs continuity as a fun
tion of coupling strength and additive noise between He´non sys-
tems. Continuity is more sensitive for the noiseless nonlinear c
but cross correlation is far more robust at all levels of addit
noise. Asterisk (* ) indicates statistical confidence limits.
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FIG. 4. Simultaneously mea
sured intracellular voltages from
two neurons as a function of low
left, and high, right,@K1# levels.
No evidence of significant cou
pling, linear or nonlinear, is ob-
served in low@K1#, but evidence
for both cross correlation and con
tinuity ~forward and reverse! is
observed in high @K1#. Gray
scale as in Fig. 2.
es
c
i

de
t-
W
a
o
tly,

l
in
he
di-

.

global linear or local nonlinear methods alone to t
for coupling between systems. We propose that a balan
approach to coupling identification in such systems
required, and will expand on these findings in a more
tailed report@13#. By using these two methods with contras
ing assumptions we have covered the whole of Fig. 1.
speculate that the question mark in the noisy nonlinear qu
rant in Fig. 1 might be a global linear approach such as cr
correlation, but this remains to be proven. Most importan
.

t-

D.
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we have elevated the continuity statistic beyond the usuaad
hoc definitions requiring massive numerical work to ga
statistical significance to an analytical level on par with t
cross correlation where significance can be calculated
rectly.
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