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Analytical coupling detection in the presence of noise and nonlinearity
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A rigorous analytical approach is developed to test for the existence of a continuous nonlinear functional
relationship between systems. We compare the application of this nonlinear local technique to the existing
analytical linear global approach in the setting of increasing additive noise. For natural systems with unknown
levels of noise and nonlinearity, we propose a general framework for detecting coupling. Lastly, we demon-
strate the applicability of this method to detect coupling between simultaneous, experimentally measured,
intracellular voltages between neurons within a mammalian neuronal network.
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Faced with an experimental system whose equations affi [7]). Nonlinear measures of synchronization and predic-
unknown, it is often important to determine when compo-tion have recently been developed, which are capable of de-
nents of the system are coupled. An example of current intecting coupling between nonlinear systems when linear
terest is the behavior of neural systems. We now understariethods fail. Previous work with spinal cord motoneurons
that many neural cognitive phenomena, from insétjsto ~ Were consistent with the usefulness of nonlinear methods to
mammalg 2], correspond to computations performed in tran-identify certain neuronal interaction$]. Nevertheless, a
siently synchronous ensembles of neurons. But in order t§ontinuity measure underlies many of the recent approaches,
define such functional ensembles, one must first determinécluding prediction at zero time, mutual nearest neighbors,
whether the neurons are coupled. and mutual variancd8,9]. Importantly, continuity is an

Neural systems are examples of natural systems where ti@ymmetric property, and can be implemented to distinguish
elements are highly nonlinear, and beset with an indetermidirectionality of coupling 5].
nate amount of noise. We expect that all natural systems will We show here that, like cross correlation, we can put a
present two types of impediments to detection of couplingcontinuity statistic and its associated significance in an ana-
noise and nonlinearity. We introduce here the idea that therbytical setting that eliminates the need for extensive numeri-
are two approaches to coupling detection, each of which aréal work to support the results. Previous attempts to quantify
well suited to particular balances of noise and nonlinearity. Ifsuch measures have not dealt with the independence of
the balance is unknown, neither approach alone can be religg@mpled neighborhoods rigoroudly], or have resorted to
upon to detect coupling. bootstrap methods in order to establish the significance of

Cross correlation and continuity are examples of statistic§ontinuity [8].
suited to extreme cases of the balance between noise and The continuity of a function relating multivariate data sets
nonlinearity. For instance, cross correlation probes globallyX and Y is quantified using local measures of continuity
for the simplest functional relation, linear, and is the mostabout selected fiduciary points. The multivariate data can
tolerant to noise. Noise tolerance comes from the linear naPe simultaneous measurements of several variables or, in our
ture of the assumed functional form which allows addedexamples, delay reconstructions from time series. Within a
noise to separate from the signal and average to zero. Crogistances from x; we can collect the nearest neighbors to
correlation is well developed, and analytic estimates of sig-
nificance for the statistic exidt3] obviating the need for Noise
bootstrap numerical testifg]. Figure 1 schematically illus-
trates our present view of coupling detection. Unfortunately, Cross- 2?
in many experimental situations we do not know which correlation

quadrant from Fig. 1 is appropriate. Nonlinearity
Continuity makes few assumptions about the nature of an Cross-
underlying functional relationship, asking only whether a °°"°£a"'°" Continuity
small region of data about a system state point from one Continuity
system maps to a corresponding small region about a similar
system state point in another systgs6]. Continuity is thus FIG. 1. Schematic of balance of noise vs nonlinearity, and op-

a local property requiring minimal knowledge of the local {ima coupling detection schemes. In low noise, nonlinear methods
structure of a functiorte.g., no Jacobian must be accuratelyhave an advantage over linear methods for nonlinear systems. Lin-
ear methods are well suited to noisy linear systems. It is unknown
how noise affects detection for highly nonlinear systems. For data

*Corresponding author; Email address: sschiff@gmu.edu from many natural systems, the quadrant is unknawpriori.
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X; . Thex; point has a corresponding time indexed pginin significant fiduciary points than would be anticipated by the
theY data set. Within a distancefrom y; will be n{ nearest binomial statistic. To prevent overlap the state space is tes-
neighbors ofy; . For each fiducial point pairx{,y;), a count  sellated into regions with equal numbers of points. Tessella-
m; of the subset oh? points that have corresponding time tion is performed by finding the first principal component of
indexed points withim? are determined. the entire data sdthe direction for which most variance in

Under the null hypothesis that there is no functional relahe data is observedprojecting and rank ordering the points
tionship between the two data sets, the nearest neighbers inonte the first principal component, and tesselating the data
will be no more likely to map intce than if they had been Set at the median point. Each of the two resulting regions are
chosen randomly fronX. This can be thought of as a classic then similarly tessellated by finding the first principal com-
“urn” problem [10], where all of the points in thé set are  ponents of each region and subdividing at their medians. The
red and the rest of th& points are blue. If a continuous fiducial points were selected as the points closest to the geo-
function exists relating< andY, given ane there will always metric center of each tessellation. The method is therefore
be aé where all red points are withia. Since we are dealing independent of inhomogeneities in the geometrical distribu-
with real data rather than analytical functions, we relax thetion of points.
strict definition and aIIovvmisni‘s to be the number of red Such a measure of continuity is dependent upon the se-
balls in thee set. lection of neighborhood sizes® and n®. Without a priori

Under the null hypothesis, points are randomly mappedknowledge of the data set’s underlying dynamics or noise, a
from X to Y, and a handfuh/ are selected fron¥ without  range ofn® andn® are examined for a range of embedding
replacement. The number of; points inn{ should therefore dimensions.
fall under the hypergeometric distribution(k|ns,n,,N) Unidirectionally coupled Heon maps were used to test
:(ES)(:;‘SK)/(”S) [10], where §) is the binomial coefficient. the sensit;vity of the continuity measureY(t+1)

The probability thak points fromn? map intoe is equal to . -4~ ()" +0.3v(t—1) X(t+1)=1.4-[CY(1) + (1~ C)
the number of combinations df points that could have X(t)]X(t)+0.3X(t—_1), whereC sets the coupling strengt_h.
. nd ltinlied by the number of combina- The top panel o.f Fig. .2 show§ raw data for .weak goupllng,
g]oigpsfd Ig:tnotfs fl(’(k)r?ﬂ, orztjsidpé that )éould have mapped into C=0.02, after discarding the first 1000 transient points were
Nen® p. . _ pp' discarded and the subsequent 8000 iterations used for analy-
(he—k), divided by the total number of combinations mff  sjs (top panel, Fig. 2 The second panel shows cross corre-
points that could have been selecte:ﬁi) ( lation with the Bartlet estimatdi3] indicated as a 95% con-

We want to estimate the probability that; or fewer fidence limit(second pangl One would expect no more than
points from & map intoe by chance. This probability is the 5% of the cross correlation values to be greater than this
sum of the cumulative hypergeometric function far confidence interval by chance, and the data in this figure
=0,...m heym(M|ns,n, ,N)=2kmi:0h(k|na,ns N). suggest no significa_nt Ii_near cross correlation. .

We define significant fiduciary points as those wheyg, _The next par_lels in F.lg. 2 |Ilustrat§ how a small region of
suggests thatn, are significant. Global continuity is then PCINts labeleds in the drive systentthird panel lefi maps to
evaluated by counting the number of significant fiduciaryth® correspondingly indexed points in the response system
points, Ngjq. The significance limit may be estimated by (third panel right. The tessellation of the Hien system is
m,. = min{mheMmInsn, .N)>0.95 (for fixed n; andn,), |IIustrate_d in the drlver_datéthwd pane_l left of Fig. 2 S_uch
which sets a thresholdh, , the probability of which is the tes_sellanon was app_lled to the dnve_ system L.mt'l seven
smallest integer value for whiai; is expected to occur with points remained wythm gagh tesse_llat|on, following which
probability greater than 0.95. For a given the correspond- the most central points within the drl|ve system were sel_ected
ing p, =P(m;>m,)=1—hey(M,|ns,n,,N) is the prob- as fiducial, and the corr_espo_n_dlng time |r!dexed points in the
ability that more points tham, will map from & into e, response system were identified as fiducial. Eheg]ons of
which will be less than probability 0.05. The count of thethe response system were selected as nearest neighbors about

number of fiducial points at whichn,>m, we callNgg. To these response fiducial points. The probabilities associated

quantify the significance of the global continuity, we use th ewr[h both forward drive-to-response and reverse response-to-

cumulative binomial distribution to determine the probability drive mappings were determined, by alternately selecting the

: o driver or response system to be tessellated.
thf'ﬂ the number of points that reached significarig, The bottom panel of Fig. 2 illustrates the result of the
might have done so at randoifi0], beum(NsigINt.Px)  continuity statistic. Significant continuity is not identified for

=3NS N /T (Ng—1)!]p (1= p,)V", using the given the drive-to-response system, as anticipated in the weak cou-
p, and N; (number of fiduciary points If the cumulative  pling regime. Nevertheless, there is significant continuity
binomial statistic is larger than 0.95, then we can reject ouidentified from the response to the drive system. In a unidi-
null hypothesis that the two data sets are uncoupled. rectional drive-response system, the response system at all

Using the hypergeometric function and the binomial dis-finite coupling strengths always contains information and a
tribution assumes that the fiduciary points and their neighsignificant mapping from response to drive. In such systems,
bors must be independent, implying that the local neighborthe appearance of a functional relationship from drive to re-
hoods cannot overlap. Overlapping the neighborhoodsponse is seen only at higher coupling strengths at the onset
around the fiduciary points would result in larger numbers ofof generalized synchronization.
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g9 T tion of coupling strength and additive noise betweeméte sys-
8 2 = tems. Continuity is more sensitive for the noiseless nonlinear case,
uEJ but cross correlation is far more robust at all levels of additive
noise. Asterisk £) indicates statistical confidence limits.
Xa n . paled neurons within a live neuronal network, each from
Driver— Response RGSDOHSG%DFIVGF1 within separate neighborhoods of neurons. We turn off the
8w 232 spike generating mechanism in the impaled neurons in order
= B 224 0.9998 to use them as receivers of inputs from their respective
S w112 w 112 0.9996 neighborhoods, then test whether the received signals are
5 gg gg related. Rat brain slices were prepared as in Rdfl. Simul-
o 14 09994 taneous intracellular voltage measurements from two neu-
7 7 0.9992 rons were recorded using whole cell patch clamp. Action
7 28n 112 448 N potentials were suppressed by hyperpolarizing, permitting
8 S accurate measurement of the input synaptic currents. Cou-

pling was measured under two conditions that altered the

ari q LS d 'sh functional relationship between the neurons: slices bathed in

cross correlation, with 96% confidence nterv@artert mdcated 0Mal (3.5 MLK ") versus mildly elevated potassium
. " ° i 7, concentration (5.5 M[K™]). This elevation in extracellular

as solid lines. Third panel shows tessellation of drivenéte sys- otassium causes a small increase in neuronal coufli

tem, and a5 region is indicated. Points from th&region mapped P Ei 4 illustrates th It di f W 9

to dark circles within the response systénght), and a fraction of lgure 41 u§ rates the vo qge r+ecor_ INgs from two neu-

rons as a function of low and higkK " ]. Time delay embed-

these points fall within the region indicated. Lower panel shows ' - .
continuity results with probability indicated as gray scale, dark be-fjmg Iag.s were determined from th? decaY of the mutu'al
ing highly significant. Since we perform 64 separate comparisondlformation between the embedded time series as a function

for eight levels ofé ande, we set the joint probability that none of Of lag [12]. Lag selected was the minimum integer value
the 64 Comparisons were Signiﬁcant at 0%)9992’54 We as- CaUSing decay of the mutual information t@ bf its value at
sume thate will in general be larger tham, and therefore only 0 lag. Without knowledge of the underlying dynamics of the
calculate values above the diagonal line. neuronal data, we tested for continuity at a range of embed-
ding dimensiond showing data fod=1, 2, and 3 in the
The response of these two methods, cross correlation arfayure.
continuity, as a function of additive noise is instructive. Fig- The low[K™] condition is associated with no evidence of
ure 3 shows a comparison of sensitivity of the methods orsubstantial coupling, in either cross correlation or continuity
coupled Heon maps with four levels of Gaussian additive (Fig. 4, lef). At the higher[K*] level, these neurons are
noise: 0, 0.125, 0.25, and 0.5 standard deviatiensf the ~ more heavily coupled within the network, and cross correla-
amplitude distribution measured from the drive and responsgon is significant(Fig. 4, righd. In addition, continuity in
data set respectively. Without additive noise, the continuityelevated K* ], both forward and inverse, is significant ct
measure is far more sensitive to weak coupling in this systers=1 and 3(Fig. 4, righ. In this neuronal network, we do not
than is cross correlatiofwe note the solitary case of poor know (and cannot determinehe full nature of functional
continuity detection for zero noise at very weak coupling relationship between the neurons. Nevertheless, our finding
However, as noise increases, cross correlation becomeso# significant continuity establishes that these two neurons
more robust determinate of coupling in this nonlinear sys-are functionally related, implying a common dynamical link.
tem. An unknown balance between noise and nonlinearity
To demonstrate whether two ensembles of neurons frorin systems where an accurate model of the underlying equa-
the brain are coupled, we record from simultaneously im+tions is lacking may render it impossible to rely upon either
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global linear or local nonlinear methods alone to testwe have elevated the continuity statistic beyond the uadal
for coupling between systems. We propose that a balancebc definitions requiring massive numerical work to gain
approach to coupling identification in such systems isstatistical significance to an analytical level on par with the

required, and will expand on these findings in a more decross correlation where significance can be calculated di-
tailed repor{13]. By using these two methods with contrast- rectly.

ing assumptions we have covered the whole of Fig. 1. We Thjs work was supported by NIH Grant Nos.
speculate that the question mark in the noisy nonlinear quag=31\MH12421 (T.N), and 2RO1MH50006  and
rant in Fig. 1 might be a global linear approach such as CrosgK02MH01493(S.S.

correlation, but this remains to be proven. Most importantly,
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