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Box-counting dimension without boxes: ComputingD0 from average expansion rates
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We propose an efficient iterative scheme for calculating the box-counting~capacity! dimension of a chaotic
attractor in terms of its average expansion rates. Similar to the Kaplan-Yorke conjecture for the information
dimension, this scheme provides a connection between a geometric property of a strange set and its underlying
dynamical properties. Our conjecture is demonstrated analytically with an exactly solvable two-dimensional
hyperbolic map, and numerically with a more complicated higher-dimensional nonhyperbolic map.
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I. INTRODUCTION

Fractal dimensions are important quantities in charac
izing the geometric structure of strange sets. In particu
they provide measures of the arbitrarily fine scale struct
of invariant sets generated by chaotic processes. Fro
practical point of view, they also provide an estimate of t
minimum number of degrees of freedom needed to desc
the dynamical evolution of these chaotic systems.

One of the simplest and most intuitive definitions of t
fractal dimension of a strange set is the box-counting dim
sion ~or capacity dimension! D0 @1–5#. Given a fractal set in
a d-dimensional Euclidean space,D0 gives the scaling be
tween the number ofd-dimensionale boxes needed to cove
the set completely, and the boxes’ sizee. For a fractal set
generated by a chaotic process, one can also define its i
mation dimensionD1 @6# by weighting thee boxes by the
frequency with which a typical chaotic trajectory visits ea
box.

Both these definitions are based on the geometric st
ture of the strange set, and, in the case ofD1, its associated
probability distribution. They both involve the constructio
of a covering set with a grid ofe boxes. Direct application o
these geometric definitions to chaotic dynamical system
difficult, since ase decreases it becomes impossible to d
termine all thee boxes visited by a given trajectory from
finite amount of data. This problem is especially severe
the box-counting dimension, because it can depend hea
on regions infrequently visited by a typical trajectory.

The Kaplan-Yorke conjecture connects the informat
dimensionD1 to the Lyapunov exponents of the chaotic s
@7–9#: it relates a geometric quantity of a strange set to
dynamical properties of the underlying chaotic process. M
importantly, since numerical algorithms for calculatin
Lyapunov exponents are in general more efficient than
mension calculations based on the counting ofe-boxes in
d-dimensional space, the Kaplan-Yorke conjecture provi
a direct and simple method to estimate the information
mension of a chaotic set.

Various attempts@9–13# have been made to formulate
generalized Kaplan-Yorke-type relationship for the spectr
of generalized Renyi dimensionsDq @6#, which includes the
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box-counting dimension (q50) and the information dimen
sion (q51). However, forqÞ1, it does not appear thatDq
can be expressed in terms of a finite number of invariants
the dynamical system such as Lyapunov exponents. In f
the Lyapunov partition function formalism of Refs.@12,13#
suggests that, for typical attractors,Dq must be determined
from a family of weighted average volume expansion ra
depending on a real parameter.

In this paper, we first propose and discuss the follow
conjecture for an upper bound for the box-counting dime
sion D0 in terms of averagek-dimensional expansion rate
Ek ,k51, . . . ,d ~to be defined below! of a d-dimensional
chaotic system:

D0<m1
ln Em

ln Em2 ln Em11
, ~1!

where m is the smallest integer less thand such that the
average (m11)-dimensional expansion rateEm11 is con-
tracting, i.e.,Em11,1 @14#. ~This upper bound is generall
lower than the rigorous upper bound reported in Ref.@15#.!
We also introduce an iterative scheme that generates a
quence of decreasing upper bound estimates forD0. Numeri-
cal experiments show that convergence to within mach
precision of the trueD0 usually occurs within a few itera
tions. This proposed scheme provides a more effici
method for estimating the box-counting dimension of a c
otic attractor than the direct application of the definition
box-counting dimension, especially in experimental situ
tions.

The paper is organized as follows. We begin with a de
nition of the box-counting dimension, and provide a heuris
argument for our conjecture. In Sec. III, we show analy
cally that Eq.~1! holds for the generalized baker’s map~a
simple hyperbolic system!. In Sec. IV, we describe the rela
tionship of our conjecture to the partition function forma
ism. In Sec. V, we describe our iterative refining scheme a
demonstrate that it converges to the true value ofD0. Finally,
in Sec. VI, we numerically estimate the box-counting dime
sion of a nonhyperbolic system~the Hénon map! using our
proposed iterative scheme, and show that our calculated
sults agree well with previous results reported elsewh
378 ©1999 The American Physical Society
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PRE 60 379BOX-COUNTING DIMENSION WITHOUT BOXES: . . .
@13,16#. We also illustrate the utility of our procedure b
calculatingD0 as a function of a system parameter for
four-dimensional map.

II. CONJECTURE FORMULATION

Assume that we have ad-dimensional dynamical system
given by ad-dimensional invertible mapF(x), and that it
possesses a chaotic attractor. The box-counting dimen
D0 of the attractor is defined in the following way. First w
partition the entired-dimensional state space by a grid
d-dimensional cubes with sizee. We then count the numbe
of e cubes,N(e), that contain points belonging to the attra
tor. The set of all nonempty cubes constitutes a cover for
attractor. With successively smaller values ofe, the number
of cubesN(e) increases. The box-counting dimensionD0 of
the attractor is defined as the scaling exponent betweenN(e)
ande ase→0,

D05 lim
e→0

ln„N~e!…

ln~1/e!
. ~2!

The second ingredient needed in the formulation of
conjecture is the concept of average expansion rates.
simplicity, we assume that the chaotic attractor is hyperbo
meaning that the number of asymptotically stable and
stable directions is invariant for the entire attractor and t
there are no neutrally stable points embedded in the attra
Consider a collection ofM0 initial conditions chosen ran
domly from the attractor according to its natural measurem.
For a given initial conditionx0

j in the set (1< j <M0), we
can define a spectrum offinite time expansion factors@4,11#

l1>l2>•••>ld , ~3!

which is an ordered sequence of the square roots of the
genvalues of the real non-negative Hermitian mat
@DFn(x0

j )#†DFn(x0
j ). HereDFn(x0

j ) is the Jacobian matrix o
then-times iterated mapFn(x0

j ), and † denotes the transpo
of a matrix. Since we assume that we have a hyperb
attractor, then for largen there exists an integer 1<m<d
such that for allx0

j ,l1>•••>lm.1 and 1.lm11>•••

>ld .
With these finite time expansion factors, we can define

local finite time k-dimensional volume expansion rate
Lk(x0

j ,n)5) i 51
k l i(x0

j ,n). As a simple example, aftern re-
peated applications of the mapF, the image of a small line
segment originally centered atx0

j with an initial length ofe
will have a stretched length approximately given
eL1(x0

j ,n)5el1(x0
j ,n). The finite time local volume expan

sion ratesLk(x0
j ,n) will in general fluctuate in time and

across the attractor. It is useful to define the following p
iterateaverage expansion ratesover the natural measurem:

Ek5 lim
n→`

^Lk~x0
j ,n!&1/n5 lim

n→`
S lim

M0→`

1

M0
(
j 51

M0

Lk~x0
j ,n!D 1/n

.

~4!

It is important to note that although the asymptotic grow
rate of l i(x0

j ,n) gives the Lyapunov exponentshi of the
on
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system@i.e.,hi5 limn→`(1/n)ln li(x0
j ,n) for ‘‘almost every’’

x0
j with respect to the natural measurem#, Ek will typically

be different from exp((i51
k hi) @17#. The difference will in

general depend on the distribution of the finite tim
Lyapunov exponents@4#. While the Lyapunov exponentshi
are well recognized as important dynamical averages
studying chaotic systems, the average expansion ratesEk , to
our knowledge, have received relatively little attentio
@12,13,18–20#. ~An efficient method for calculating averag
expansion rates can be found in Ref.@19#.!

To connect the geometric concept of the box-count
dimensionD0 of a chaotic attractor to its average expansi
ratesEk , we consider a simple two-dimensional invertib
mapF(x) with E1.1 andE2,1. Thus,on average, a small
line segment will be stretched and a small area will be c
tracted under the repeated application of the mapF. As in the
definition for D0, we first cover the entire attractor wit

Ñ(e) boxes of edge lengthe. We are interested in the add
tional number of boxes needed to cover the entire set if
decrease the size of the boxes. To estimate this scaling
iterate each of the originale boxes forward in time by a large
number of iteratesn. By choosinge small enough, the im-
ages of the boxes are well approximated by a collection
stretched parallelograms; an example is shown in Fig. 1~a!.

The image of the box originally located atx0
j
„j P@1,Ñ(e)#…

will have a decreased area given bye2L2(x0
j ,n) and a

stretched edge length ofeL1(x0
j ,n). We can approximate the

set of all such parallelograms with a new covering set c

sisting of Ñ(e) long thin parallelograms of areae2E2
n and

edge lengtheE1
n . We now want to cover these parallelo

grams with smaller boxes of edge lengthe85e(E2
n/E1

n). This
requires an additional factor ofeE1

n/e85E1
2n/E2

n more e8
boxes to cover the entire attractor; see Fig. 1~b!. Thus

Ñ~e8!;
E1

2n

E2
n

Ñ~e!. ~5!

Now we assume thatÑ(e) satisfies the following scaling

relation with a dimensionlike exponentDa : Ñ(e);e2Da

@21#. Then the above equation gives

FIG. 1. ~a! The j th e box is stretched into a long thin parallelo
gram under the action of the mapFn(x0

j ). The stretched box will
have an areaA;eL2(x0

j ,n) and lengthL;eL1(x0
j ,n). ~b! Cover-

ing an average stretchede box by boxes with smaller edge lengt
e85e(E2 /E1)n. ^A&;e2E2

n and ^L&;eE1
n .



g
s

a

p

e
to
b

bl

re

al
io

ar

o

rips

nto

ua-
Eq.
al

m

ral-

380 PRE 60PAUL SO, ERNEST BARRETO, AND BRIAN HUNT
S e
E2

n

E1
nD 2Da

;
E1

2n

E2
n

e2Da. ~6!

Solving for Da , one obtains

Da511
ln E1

ln E12 ln E2
. ~7!

A similar derivation for Da can be made for a
d-dimensional invertible map with averagem-dimensional
expansion rate larger than 1 and an avera
(m11)-dimensional expansion rate less than 1. In this ca
the nth iterated image of ad-dimensionale cube will be
approximately a stretched and squashed (m11)-dimensional
parallelepiped. The average such parallelepiped will have
(m11)-dimensional volume;em11Em11

n , while its largest
m-dimensional face will have a volume;emEm

n . Then, by
considering the covering of this stretched and squashed
allelepiped with cubes of smaller edge lengthe8
5e(Em11

n /Em
n ), one obtains

Da5m1
ln Em

ln Em2 ln Em11
~8!

by following the same steps as in Eqs.~5!–~7!. In this gen-
eral case, the additional number of smallere8 cubes needed
will approximately scale asemEm

n /e8m.
The heuristic argument above suggests thatDa should

approximate D0 well in cases where the finite tim
Lyapunov exponents are nearly uniform across the attrac
Further analysis and numerical evidence, to be discussed
low, suggests that, in general, Eq.~1! gives an upper bound
on D0, i.e.,

Da>D0 . ~9!

III. ANALYTICALLY TRACTABLE EXAMPLE

To demonstrate our conjecture in an analytically tracta
hyperbolic system, we use the generalized baker’s map@3,4#
defined by the following transformation on the unit squa
@0,1#3@0,1#:

xn115H laxn if yn,a

~12lb!1lbxn if yn.a,
~10a!

yn115H yn /a if yn,a

~yn2a!/b if yn.a,
~10b!

where a1b51 and la1lb<1. Starting with any initial
point (x0 ,y0) within the unit square, aftern iterates this map
will have two finite time expansion factors

l1~m,n!5a2mb2(n2m).1, ~11a!

l2~m,n!5la
mlb

n2m,1, ~11b!

wherem50, . . . ,n is an integer that depends on the initi
point (x0 ,y0). In order to compute the average expans
rates with respect to the natural measurem, we need to con-
sider the repeated application of this map to a unit squ
e
e,

n

ar-

r.
e-

e

n

e.

After one iteration, a unit square will be mapped into tw
vertical strips with widthsla andlb , as shown in Fig. 2~a!.
By repeating the process once more, there will be four st
with widths la

2 , lalb , andlb
2 @see Fig. 2~b!#. After n itera-

tions, the original unit square will become 2n vertical strips
with varying widthsla

mlb
n2m ,m50, . . . ,n. It can be shown

that the number of stripsZ(m,n) with width la
mlb

n2m is
given by the binomial coefficientn!/(n2m)!m!, and the
natural measure for a given strip with widthla

mlb
n2m ~the

fraction of area in the original unit square being mapped i
the strip aftern steps! is given byambn2m. Thus the natural
measurem(m,n), containing all strips with widthla

mlb
n2m ,

is given by

m~m,n!5ambn2m
n!

~n2m!!m!
. ~12!

With the natural measure explicitly given by the above eq
tion, we can compute the average expansion rates with
~11!. Specifically, the average finite time one-dimension
expansion ratêL1(m,n)& is given by

^L1~m,n!&5^l1~m,n!&5 (
m50

n

m~m,n!a2mb2(n2m)

5 (
m50

n
n!

~n2m!!m!
52n. ~13!

The last equality is true by virtue of the binomial theore
2n5(111)n5(m50

n @n!/(n2m)!m! #1n1m. This then gives

FIG. 2. Images of a unit square under the action of the gene
ized baker’s map.~a! One iteration.~b! Two iterations.



e

al

-

en
ng
ed

y

n

is

g
e

ntal

al

-
e

a-
at
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E15 limn→`^L1(n)&1/n52. Similarly, we can calculate th
average finite time area expansion rate

^L2~m,n!&5^l1~m,n!l2~m,n!&

5 (
m50

n

m~m,n!
la

mlb
n2m

ambn2m

5 (
m50

n
n!

~n2m!!m!
la

mlb
n2m

5~la1lb!n. ~14!

Again, the last equality is true by virtue of the binomi
theorem, andE25 limn→`^L2(n)&1/n5la1lb . Then, by
substitutingE1 and E2 into Eq. ~7!, we have an explicit
expression forDa :

Da511
ln 2

ln 22 ln~la1lb!
. ~15!

Next we show thatDa is an upper bound for the box
counting dimensionD0.

We now consider the box-counting dimension of the g
eralized baker’s map by directly applying the box-counti
definition @Eq. ~2!#. Since the invariant set of the generaliz
baker’s map is the product of a Cantor set~in the horizontal
direction! and the unit interval@0,1# ~in the vertical direc-
tion!, the y direction will be smooth~of dimension 1!, and
the fractal contribution toD0 will be solely from thex direc-

tion. ThusD0511D̂0, whereD̂0 gives the scaling of thee
intervals needed to cover the Cantor set on thex axis. One

way to calculateD̂0 is to utilize the scale invariant propert

of the map.D̂0 can be shown to be given by the transce
dental equation@3,4#

la
D̂01lb

D̂051. ~16!

Figure 3 is a graph ofD̂a5Da21 and the~numerical!

solution to the above equation forD̂0 as a function of vary-

FIG. 3. Graph showingD̂a>D̂0 for the generalized baker’s

map. The solid line is the graph ofD̂a using Eq.~15!; open circles

are numerically solved values ofD̂0 using the transcendental equ
tion ~16! at selected values oflb . The other parameters are fixed
a5

1
3 , b512a, andla5

1
3 . Note thatD05Da for lb5la5

1
3 .
-

-

ing contraction rateslb ~we fix la at 1
3 for this study!. In the

special case whenla5lb , Eq. ~16! can be solved explicitly

to give D̂052 ln 2/lnla , and the conjectured upper bound

a strict equality, i.e.,D̂05D̂a . This is illustrated in Fig. 3

when la5lb5 1
3 and D̂05D̂a5 ln 2/ln 3. For asymmetric

values ofla andlb , D̂0 andD̂a separate, and the curveD̂a

given by Eq.~15! becomes an upper bound forD̂0.

IV. PARTITION FUNCTION FORMALISM

One can analytically argue that in general,Da>D0 by
utilizing the formalism used in Refs.@12,13#. In this formal-
ism, D0 is determined by considering the followin
‘‘Lyapunov partition function’’ constructed from averag
~with respect to the natural measure! finite time expansion
factors,

g~z,n!5^l1l2
z& ~17!

where 0<z<1. For the generalized baker’s map,g(z,n)
can be written explicitly in terms ofla andlb @see Eq.~11!#,

g~z,n!5 (
m50

n

m~m,n!
la

zmlb
z(n2m)

ambn2m
5~la

z1lb
z !n, ~18!

wherem(m,n) is given by Eq.~12!.
Defining

G~z![ lim
n→`

„g~z,n!…1/n5la
z1lb

z ~19!

and comparing the above equation with the transcende

equation, Eq.~16! for D̂0, one observes that

G~z!5la
z1lb

z51 for z5D̂0 . ~20!

More generally, for typical attractors of two-dimension
chaotic systems, the authors of Refs.@12,13# conjecture that

if D̂0 is definedby

g~z!H→` for 0<z,D̂0

→0 for D̂0,z<1;
~21!

thenD0511D̂0. In terms ofG, this is equivalent to

G~z!H .1 for 0<z,D̂0

51 for z5D̂0

,1 for D̂0,z<1.

~22!

We show below thatD̂a5Da21>D̂0, and henceDa>D0
~provided the above conjecture holds!, by showing that

G(D̂a)<1.
By the Hölder inequality@22#, one can establish the fol

lowing upper bound for the partition function within th
rangezP@0,1#
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g~z,n!5^l1l2
z&5^l1

12z~l1l2!z&

<^l1&
12z^l1l2&

z5^l1&S ^l1l2&

^l1&
D z

. ~23!

Then, recalling thatL15l1 and L25l1l2 and taking the
limit n→`, we have the following upper bound forG(z):

G~z![ lim
n→`

„g~z,n!…1/n< lim
n→`

^L1&
1/nS ^L2&

^L1&
D z/n

5E1S E2

E1
D z

.

~24!

Because the above inequality is an upper bound forG(z)

in the rangezP@0,1#, we can obtain an upper bound forD̂0
by solving

Gu~z![E1S E2

E1
D z

51.

The solution to the above equation is precisely the fractio

part D̂a of the dimensionlike quantityDa511D̂a in our
conjecture@Eq. ~7!#:

D̂a5
ln E1

ln E12 ln E2
. ~25!

See Fig. 4 for a graph ofG(z) and its upper boundGu(z).

By construction,D̂a will be an upper bound forD̂0. In our
example of the generalized baker’s map with parametera
5 1

3 , b512a, la5 1
3 , andlb5 1

12 , the value ofD0 calcu-
lated using the transcendental equation~16! is 0.409 and the
estimated upper bound using our conjecture@Eq. ~15!# is
0.442.

V. ITERATIVE SCHEME FOR REFINING ESTIMATE

One can successively obtain better estimates forD̂0 by an
iterative procedure in the spirit of Newton’s method. T

procedure, which generates a sequence of estimates$D̂a
k%,k

51,2,. . . , isbased on the observation thatG(z) is a convex

function @by which we mean thatG9(z).0]. Recall thatD̂0
is given by the value ofz whereG(z)51. Then, with the

FIG. 4. The solid line is a graph ofG(z) vs z for the generalized
baker’s map witha5

1
3 , b512a, la5

1
3 , andlb5

1
12; G51 at

z5D̂0. The dotted line is the upper boundGu(z)5E1(E2 /E1)z.

This curve crossesG51 at our conjectured upper boundD̂a .
al

particular expansion rates@see Eq.~17!#

G~0!5 lim
n→`

^l1&
1/n5E1 ,

G~1!5 lim
n→`

^l1l2&
1/n5E2 ,

a simple estimateD̂a
1 is obtained by the value ofz where a

straight line thoughG(0) andG(1) crosses 1. One may the

obtain an improved estimateD̂a
2 by calculatingG(D̂a

1), and

using the straight line throughG(0) and G(D̂a
1). Figure 5

illustrates the procedure. Clearly, the sequence of estim

generated by this procedure converges toD̂0.
An improved sequence of decreasing upper-bound e

mates may be obtained by using more appropriate cu
than the straight lines used above. A superior set of curve
suggested by Eq.~24! and its geometric interpretation in Fig
4. There, we showed that our conjecture@Eq. ~1!#, is equiva-

lent to estimatingD̂0 by the value ofz where

Gu~z!5E1S E2

E1
D z

5^l1&S ^l1l2&

^l1&
D z

51.

Call the resulting estimateD̂a
1 . Using this value, we may

apply the Ho¨lder inequality to the partition functiong as
follows:

g~z,n!5^l1l2
z&

5^l1
12z/D̂a

1

~l1l
2
D̂a

1

!z/D̂a
1
&

<^l1&
12z/D̂a

1
^l1l

2
D̂a

1

&z/D̂a
1

5^l1&S ^l1l
2
D̂a

1

&

^l1&
D z/D̂a

1

, ~26!

which is valid forzP@0,D̂a
1#.

FIG. 5. By exploiting the concavity ofG(z) ~solid curve!,

straight lines may be used to estimateD̂0. Here,D̂a
1 is the value of

z where a straight line connectingG(0) andG(1) intersectsG(z)

51. D̂a
2 is similarly obtained by using the straight line connecti

G(0) andG(D̂a
1).
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In addition, sincê l1l
2
D̂a

1

&<^l1&(^l1l2&/^l1&)
D̂a

1
by vir-

tue of Eq.~23!, we can also show the following inequality

^l1&
12z/D̂a

1
^l1l

2
D̂a

1

&z/D̂a
1
<^l1&

12z/D̂a
1F ^l1&S ^l1l2&

^l1&
D D̂a

1G z/D̂a
1

5^l1&S ^l1l2&

^l1&
D z

. ~27!

Putting Eqs.~26! and ~27! together, we have the desire
sequence of inequalities:

g~z,n!<^l1&S ^l1l
2
D̂a

1

&

^l1&
D z/D̂a

1

<^l1&S ^l1l2&

^l1&
D z

.

Taking thenth root of each term and lettingn→`, we obtain

G~z!<Gu
2~z!<Gu

1~z!,

where

Gu
1~z!5 lim

n→`
^l1&

1/nS ^l1l2&

^l1&
D z/n

5E1S E2

E1
D z

,

Gu
2~z!5 lim

n→`
^l1&

1/nS ^l1l
2
D̂a

1

&

^l1&
D z/(D̂a

1n)

5E1S G~D̂a
1!

E1
D z/D̂a

1

.

These inequalities are represented by the concave curv
Fig. 6 ~note the change of scale!. SolvingGu

1(z)51 gives our
original estimate@Eq. ~25!#

D̂a
15

ln E1

ln E12 ln E2
.

Solving Gu
2(z)51 gives an improved estimate

D̂a
25D̂a

1S ln E1

ln E12 ln G~D̂a
1!
D .

FIG. 6. Graph showing the construction of the second itera

upper-bound forG(z) using the two end pointsG(0) andG(D̂a
1),

whereD̂a
15 ln E1 /(ln E12ln E2) is our first iterative upper-bound es

timate ofD̂0.
in

Continuing the sequence in an analogous fashion, we so

Gu
i 11~z![E1S G~D̂a

i !

E1
D z/D̂a

i

51

to obtain the (i 11)th estimate

D̂a
i 115D̂a

i S ln E1

ln E12 ln G~D̂a
i !
D .

This sequence of iterative upper boundsD̂a
1>D̂a

2>•••

>D̂0 must converge toD̂0. Thus, operationally, instead o
actually sampling the partition functionG(z) as a function of
z and looking for the location where it crosses 1, our ite
tive procedure provides a more efficient way to estimate
box-counting dimension by evaluating the partition functi

only at a few choice locations, namely, atz50,1,D̂a
1 ,D̂a

2 ,
etc. Figure 7 is a demonstration of this iterative procedure
calculating the box-counting dimension of the generaliz
baker’s map withla5 1

3 andlb5 1
100 (a5 1

3 andb512a).
We choose these values since, recalling Fig. 3, we exp

that the error betweenD̂0 and D̂a
1 should increase with in-

creasing asymmetry between the two contraction ratesla
and lb . This is indicated by the first open circle in Fig. 7
Although the percentage error of the first iterative upp

bound estimateD̂a
150.393 34 is relatively large ('38%),

the sequence of iterative upper boundsD̂a
i converges very

quickly to the actual value ofD̂050.285 16. Also plotted for
comparison is the sequence of estimates obtained by u
straight lines~triangles!, as described at the beginning of th
section.

VI. HIGHER-DIMENSIONAL NONHYPERBOLIC
EXAMPLE

The generalized baker’s map is a hyperbolic map w
invariant hyperbolic subspaces. We now consider our ite

e FIG. 7. Estimation ofD̂0 with large asymmetric contraction
rates (la5

1
3 andlb5

1
100) using the iterative upper bound metho

The dotted line is the numerically calculatedD̂0 using Eq.~16!, and

the open circles are the iterative estimatesD̂a
i of D̂0 using our

procedure. The horizontal axis indicates the number of itera
steps.
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tive approximation method for a nonhyperbolic system,
Hénon mapH(u,v;b)5(1.42u21bv,u) with b50.3. Us-
ing box-counting techniques, the box-counting dimension
the Hénon attractor was reported as 1.2860.01 @16#. Our
estimate for D0 using the iterative method is 1.274
60.0001, in agreement.~At each iterative step in our est
mation procedure, the average expansion rates were c
lated using a single trajectory of 23106 iterates, initiated at
a randomly chosen initial condition within the basin of a
traction. The final result is taken after the tenth refining ste!
Using the partition formalism, Ott, Sauer, and Yorke obtai
D0 estimate of 1.274560.0005@13#, while Badii and Politi
obtain a slightly higher value, 1.275560.0005 @12#. While
these results are consistent with each other at the extr
limits of the error bounds, our procedure supports the form
result.

The relative simplicity of our procedure permits the ea
calculation of an attractor’s box-counting dimension as
function of a system parameter. To illustrate this, we use
nonidentical coupled He´non maps

xn115H~xn ;bx!,

yn115~12c!H~yn ;by!1cH~xn ;bx!,

where H is the standard He´non map~see above!, c is the
coupling parameter between thex andy subsystems, and w
set bx50.3 andby50.2. Whenc51, the y subsystem is
completely enslaved by thex subsystem, andD0 for the
combined system is just the box-counting dimension fo

FIG. 8. Graph ofD0 for the coupled He´non map as a function o
the coupling parameterc. The lower dotted line is the box-countin
dimension of a single He´non attractorD051.28. The upper dotted
line is 2D052.56.
n
-

e

f

cu-

.
a

e
r

y
a
o

a

single Hénon attractor withb50.3. In Fig. 8, we plot the
numerically estimatedD0 calculated using the iterative pro
cedure of Sec. V as a function of couplingc. For each dif-
ferent value of the coupling and at each iterative step in
estimation procedure, the average expansion rates were
culated using a single trajectory of 23106 iterates, initiated
at a randomly chosen initial condition within the basin
attraction. The plotted estimates were obtained after ten
fining steps.

In the case whenc50, the x and y dynamics decouple
and the resulting attractor is the direct product of two no
indentical Hénon attractors. Thus its dimension is the sum
the dimensions of each separate attractor, which we calcu
to be 2.474060.0001 by applying our algorithm to eac
Hénon map separately. In general, the case of two uncou
systems is exceptional for the dimension formalism d
cussed here, due to the presence of Cantor-like struc
along two independent directions. Accordingly, our alg
rithm for the full but decoupled system yields a slight
higher value, 2.529460.0002. For intermediate values o
coupling, we expect the attractor to be Cantor-like in o
direction only, and the formalism should be accurate.~A
detailed description of the morphology of desynchronizi
systems in terms of the changes in its topological entro
and dimensions will appear elsewhere@23#.!

In summary, we propose Eq.~1! as an easy-to-calculat
upper bound estimate for the box-counting dimension o
chaotic attractor. This is actually the first of a decreas
sequence of upper bounds for the box-counting dimens
which we derive. The sequence is based on average ex
sion rates, quantities that are directly measurable from
observed dynamics of the chaotic process. This conjec
provides an interesting link between the geometric struct
of a chaotic attractor to its underlying dynamical properti
and provides an efficient way to calculate the box-count
dimension of a chaotic set.
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