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Tracking unstable periodic orbits in nonstationary high-dimensional chaotic systems:
Method and experiment
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We consider the adaptive control of chaos in nonstationary high-dimensional dynamical systems. In particu-
lar, we propose and experimentally implement a technique to stabilize and track unstable periodic orbits based
on the use of time series. In our technique, the position of the periodic orbit and other parameters in the
controller are continually updated from recent measurements of the system state and perturbation histories,
while the environment, simulated by one or several of the system’s parameters, drifts independent of the
control algorithm. We demonstrate the effectiveness of the technique computationally for the He´non map, a
chemical reaction model, and a coupled driven Duffing oscillator, and experimentally for a magnetoelastic
ribbon system.@S1063-651X~97!03405-3#
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I. INTRODUCTION

Recently, the theme of how to exploit the properties
chaos to do useful things has attracted a great deal of inte
One arena of this research is the development of chaos
trol techniques, in which small perturbations are applied t
nonlinear system to stabilize its naturally occurring chao
dynamics into a periodic orbit@1,2#. It has been shown tha
by doing so one may improve the system’s performa
against general classes of criteria@3#.

The basis for chaos control comes from the realizat
that a chaotic attractor has, embedded within it, an infin
number of unstable periodic orbits. The dynamics can
roughly approximated by a series of approaches to and
sequent divergences from these orbits. Regularization of
dynamics, or control, is enacted by perturbing the system
that it stays near one of these orbits. When viewed in
delay coordinate state space, the neighborhood of an uns
orbit can be separated into directions along which the
namics either converge toward~stable! or diverge from~un-
stable! the orbit. A control law, which prescribes the pertu
bations, is designed such that the state space points
pushed into the subspace spanned by the stable direction
the absence of the underlying equations of motion, the
rameters needed for control are estimated from the time
ries. One salient feature of this control paradigm is that, si
the target periodic orbit is part of the natural dynamics,
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control is often achieved with small perturbations.
A potential difficulty with a nonadaptive application o

this type of technique to real physical problems is that s
tems’ environments are rarely static. It is often the case
changing ambient physical conditions, entering the system
parameters, causes change in the dynamics in an irreg
and unpredictable fashion. If small perturbation control is
be maintained, one must be able to continually update b
the periodic orbit position and the other control paramete
Various scenarios have been considered@4# in which a mo-
mentary loss of control due to environmental variations a
the lack of adaptive control leads to catastrophic system f
ures.

A further advantage is that tracking techniques can a
be applied to extend the stable operation range of a sys
In this case, parametric change may be done at the exp
menter’s discretion without loss of control.

In the present work we attempt to develop an adapt
control strategy to track an unstable periodic orbit unde
changing environment. In particular, we are interested in
ing so for high-dimensional systems where the periodic o
cannot be effectively described by one stable and one
stable direction. Tracking an unstable periodic orbit in t
context of chaos control was pioneered by Schwartz and
andaf@5#. Additional work in this area can be found in@6,7#.

The method we present in Sec. II has two component
controller based on a general, high-dimensional control al
rithm, assuming the use of time series@8#, and a mechanism
to update the controller, requiring no assumptions of how
environment varies with time. We demonstrate our te
nique’s effectiveness in Sec. III by applying it computatio
ally to a number of numerical examples, including the He´non
map, a chemical reaction model, and a coupled Duffing
cillator. We then implement the technique in Sec. IV in
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experimental physical system, a periodically driven, grav
tionally buckled metallic ribbon, which exhibits chaotic b
havior. Section V concludes this paper.

II. THE METHOD

Let a dynamical system be described by the followi
k-dimensional map on some Poincare´ surface of section,

Xn115F~Xn ,p!, ~1!

whereXPRk andp is the control parameter to be perturbe
Suppose that forp5p* Eq. ~1! has a chaotic attractor. With
out explicitly knowingF, we base our analysis and contr
on a discretely measured time series$xn% of some scalar
observablexn5h(Xn). Using delay coordinates@9# we re-
construct the high-dimensional dynamics from$xn% via
zn 5 (zn

(1) ,zn
(2) , . . . ,zn

(m))T 5 (xn2m11 ,xn2m12 , . . . ,xn)
T,

wherem is the dimension of the reconstructed phase sp
andT denotes matrix transpose. For large enoughm, zn is a
global one-to-one representation of the variableXn on the
original attractor. Since the control is done by changing
value ofp according to a control law for every iteration o
the map, the reconstructed discrete map forzn has the form

zn115G~zn ,pn2m11 ,pn2m12 , . . . ,pn!. ~2!

Here,G generally depends on all the parameter variatio
effective during the time intervaln2m11<t<n spanned
by the delay vectorzn @10–12#.

In the reconstructed phase space a fixed point for
nominal system ~i.e., when p5p* ) is denoted by
z*5G@z* (p* ),p* ,p* , . . . ,p* #. The Jacobian matrix for
Eq. ~2! is the followingm3m matrix @11#:

An5Dzn
G~zn ,pn2m11 ,pn2m12 , . . . ,pn!.

The set ofm-dimensional column vectors,

Bn
~ i !5Dpn2 i11

G~zn ,pn2m11 ,pn2m12 , . . . ,pn!,

for i51,2, . . . ,m characterize the effect of the control p
rameter variations on the dynamics. Evaluating all the par
-

.
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e
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derivatives at zn5z* (p* ) and pn2m115pn2m12
5•••5pn5p* , we obtain the linearized dynamics aroun
the fixed point@11#,

dzn115Adzn1B~m!dpn2m11

1B~m21!dpn2m121•••1B~1!dpn , ~3!

wheredzi5zi2z* , dpi5pi2p* , and we have dropped th
reference ton for A andB since they are constant at the fixe
point. We note that, due to the nature of the time series
delay coordinates used here, most of the entries in the ab
matrix and vectors are zero. Specifically, we have@8#

A5S 0 1 0 ••• 0

0 0 1 ••• 0

A A A A A

0 0 0 ••• 1

am am21 am22 ••• a1

D
m3m

,

B~ i !5S 0

0

A

0

bi

D
m31

, ~4!

wherei51,2, . . . ,m.
It has been pointed out in the past@10# that it is undesir-

able to derive control laws based directly on Eq.~3!. Follow-
ing So and Ott@11#, we introduce a (2m21)-dimensional
expanded phase space,Yn5(xn2m11 ,xn2m12 , . . . ,xn ,
pn2m11 ,pn2m12 , . . . ,pn21)

T, to accommodate both dy
namical measurementsxi and parameter changespi . In this
expanded phase space, near the unstable fixed p
Y*5(x* , . . . ,x* ,p* , . . . ,p* )T, the linearized dynamics
becomes

Yn112Y*5Ã~Yn2Y* !1B̃~pn2p* !, ~5!

with
Ã5S A B~m! B~m21! B~m22!
••• B~2!

0 0 1 0 ••• 0

0 0 0 1 ••• 0

A A A A A A

0 0 0 0 ••• 1

0 0 0 0 ••• 0

D
~2m21!3~2m21!

, B̃5S B~1!

0

A

0

1

D
~2m21!31

, ~6!
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55 4937TRACKING UNSTABLE PERIODIC ORBITS IN . . .
where0 indicates anm-dimensional row vector of 0’s.
To control, we apply a suitable perturbatio

dpn5pn2p* , following each measurementxn , to keep the
dynamics within the stable subspace ofÃ. For a fixed point
with u unstable directions, the control law governing t
choice ofdpn is derived to be@8#

dpn52S (
k51

u
~lk!

u

~vk
TB̃! )

i51,iÞk

u

~lk2l i !

vk
TD dYn , ~7!

wherelk are the unstable eigenvalues ofÃ, ordered in de-
scending absolute value, and the contravariant unst
eigenvectorsvk are defined byÃ

Tvk5lkvk . It can be shown
@8# that the elements ofvk5(vk

(1) ,vk
(2) , . . . ,vk

(2m21)) are
vk
( i )5( j51

i am2 j11(lk)
j2 i21 for i,m, vk

m51, and
vk
( i )5( j51

i2mbm2 j11(lk)
j1m2 i21 for i.m.

Next, we consider the mechanism to update the ab
controller as the environment drifts over time. In terms of t
measured variablex and the parameterp, from Eq. ~3!, we
have

xn112x*5 (
a51

m

aa~xn2a112x* !1 (
b50

m

bbdpn2b11 . ~8!

The quantitiesaa , bb , andx* in the above difference equa
tion fully determine the control law in Eq.~7!. In fact, a
major step toward achieving initial control is to find ways
fit the unperturbed and perturbed dynamics near the fi
point to obtain the values of these parameters. This is usu
done with the least-squares technique~see@8#!. Here we sup-
pose that this step has been completed. Assume now tha
system parameters have changed slightly, such that the
point position and the shape of the linear region are mo
fied, but not so much that the control is lost or that t
dynamics during control are outside the linear region of
new fixed point. In this case, Eq.~8! still applies, and we can
use a short history ofN points incorporating the most rece
measurements of the system state and perturbations to
the control parameters. This refitting can be repeated as o
as once per measurement cycle and requires noa priori
knowledge or assumptions about how the environment
changed.

Below we explain how to update the fixed point positi
x* and the parametera’s andb’s in two separate steps, sinc
each fitting step incorporates a different idea. In pract
these steps can be combined into one step.

~1! Assume thata’s andb’s remain constant for the du
ration ofN iterates. From the expression in Eq.~8!, we ob-
tain

^xn112x* &N5 (
a51

m

aa^xn2a112x* &N

1 (
b51

m

bb^dpn2b11&N , ~9!

where ^&N denotes average over the history ofN measure-
ments. Upon rearranging terms we have
le

e
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e
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,

x*5^xn&N1
(bbb

12(aaa
^dpn&N5^xn&N1g^dpn&N , ~10!

where

g5
(bbb

12(aaa
. ~11!

At the end of this fitting cycle,̂ x* &N is taken as the new
fixed point position. Although this method of calculatin
x* may seem simplistic, by construction it guards agains
nonzero average indp. Therefore, its use maintains th
small-perturbation quality of the control.

~2! Assuming now thatx* is a constant, fromN iterates,
we apply a least-squares fit to Eq.~8! to get the values of the
a’s andb’s. To do so accurately, we must enforce a sm
amount of motion about the fixed point, because incess
applications of control suppress the motion around the fi
point, making the estimation of thea’s and b’s difficult.
~This technique is called interrogation by Petrovet al. @7#.! It
is worthwhile to note that control can often be maintained
a while during the environment change without having
update thea’s andb’s. However, when the control fails as
result of the actual fixed point being too far removed from
original known location, it is often too late to update th
a’s and b’s. By enforcing a small amount of natural loca
dynamics, we are able to update thea’s andb’s more pre-
cisely and more frequently. Specifically, this is done as f
lows. We monitor the absolute value of the perturbati
dpn . If it is smaller than some predetermined thresho
dpmin , we do not apply the perturbation~i.e., setting
dpn50) and let the system evolve freely for that itera
This proves effective both in our numerical and experimen
work.

The estimated values ofx* anda’s andb’s are subject to
statistical fluctuations that can be very significant at tim
As a precaution, we test the veracity of the newly deriv
parameters by checking whether the new values are clos
the previous values@13#. In fitting x* , we define a maximal
distance between the newly estimated value and the pr
ously used value. If the measured distance exceeds this m
mal distance, we do not update the fixed point position.
testing both thea’s and theb’s we rely on quantities derived
from a’s and b’s. Since thea’s describe the unperturbe
dynamics near the unstable fixed point, the critical inform
tion they contain for control purposes is the directions of
stable and unstable manifolds of the fixed point. As a tes
the fit of thea’s, we place a maximal angular deviation o
say, 15° between the new most unstable direction and
previous one. In order to test the new values of theb’s, we
limit the fractional difference in the quantityg defined in Eq.
~11!. Specifically, in the experimental work reported in Se
IV, we require

~gcalc2gold!
2

ugcalc* goldu
,2.25. ~12!

We comment, however, that for a given system one sho
tailor the criteria to achieve the best result.

III. NUMERICAL EXAMPLES

Now we apply the tracking technique above to three n
merical examples chosen to illustrate various aspects of
technique: the He´non map, a chemical reaction model, and
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coupled driven Duffing oscillator. For the He´non map, all the
parameters in the control law can be calculated exactly
terms of the original map parameters. Therefore, its st
provides a way to check the fidelity of the parameter val
estimated from time series using the procedure describe
the preceding section. The chemical reaction model is
autonomous system. Here the observed discrete variab
the interval between successive crossings of some thres
by the system state. It has been shown@8,14# that these in-
tervals, called interspike intervals, sample the dynamics
the original continuous time series on some Poincare´ surface
of section. Finally, the periodically driven coupled Duffin
oscillator, probed at the integer multiples of the exter
driving period, is described by a four-dimensional discr
map. The key point here is that the periodic orbit to be s
bilized and followed has two unstable directions.

A. The Hénon map: An analytically tractable example

The Hénon map is

xn115pn2xn
210.3yn , yn115xn . ~13!

Here we use a subscriptn to denote the time dependence
the parameterpn5p*1dpn during the course of control
Assuming thatx is the observed scalar variable, from E
~13! this variable obeys the following second-order diffe
ence equation

xn115pn2xn
210.3xn21 . ~14!

Reconstructing thex time series in a two-dimensiona
space (m52), we obtain the delay vectorzn5(zn

(1) ,zn
(2))

5(xn21 ,xn). From Eq.~14!, the mapG for zn @see Eq.~2!#
can be explicitly written as

S zn11
~1!

zn11
~2! D 5S zn

~2!

pn2~zn
~2!!210.3zn

~1!D . ~15!

For pn5p* , the fixed point of interest is

x*5~20.71A0.4914p* !/2. ~16!

Linearizing Eq.~15! aboutx* leads to

S dzn11
~1!

dzn11
~2! D 5S 0 1

0.3 22x* D S dzn
~1!

dzn
~2!D 1S 01D dpn . ~17!

From the above equation, we identify the parameters in
matrix A and the vector B( i ) @see Eq. ~3!# as
a1522x*50.72A0.4914p* , a250.3,b151, andb250.

Let the parameterp* vary over time as shown in Fig
1~a!. ~Notice that in this case the varying parameter and
control parameter are the same.! Figure 1~b! shows the result
of only updating the fixed point position without concu
rently updating thea’s andb’s. It can be seen that the con
trol can be maintained for a while, but it eventually fa
when the fixed point is too far removed from its origin
location, where thea’s andb’s were initially obtained. Fig-
ure 1~c! shows the result of tracking the fixed point whi
updating both thea’s and b’s. Here we use a history o
N520 iterates in Eq.~10!. If the analytically computed po
sition of the fixed point, Eq.~16!, is plotted as a function o
time n, this plot coincides with the tracked position of th
in
y
s
in
n
is
old

f

l
e
-

e

e
fixed point in Fig. 1~c!. In addition, Fig. 1~d! shows the
estimated values ofa’s and b’s from the time series$xn%.
These estimated values agree well with their actual analyt
values, given earlier. These results demonstrate that the
trol and tracking procedure outlined in the preceding sect
works effectively for the He´non map.

B. A chemical reaction model: Tracking and control
using interspike intervals

In experimental problems, we expect to encounter t
kinds of continuous time systems, autonomous and peri

FIG. 1. ~a! Slow variation of the nominal valuep* of the control
parameterp as a function of the iteraten in the Hénon map, Eq.
~13!. ~b! Result of updating only the fixed point position withou
concurrently updating thea’s andb’s. ~c! Result of updating both
the fixed point position and thea’s andb’s. ~d! Estimated values of
thea’s andb’s from the time series during control and tracking.
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55 4939TRACKING UNSTABLE PERIODIC ORBITS IN . . .
cally driven. For a periodically driven system, a discre
Poincare´ map can be formed by sampling the dynamics
every period of the driving. We will show an example
how to control and track unstable periodic orbits in su
systems in the next subsection. In the present subsectio
introduce a technique to form a discrete Poincare´-map-
generated time series for autonomous systems.

Consider the schematic in Fig. 2, where a scalar varia
of the system statex is plotted against time. Choose a prop
thresholdx5xc . We measure the intervals between succ
sive crossings of the threshold byx(t) from a given direction
~upward crossing in the figure!. This time series$I n%, called

FIG. 2. Schematic illustration of the formation of interspike i
tervals$I n% from a continuous time series.

FIG. 3. ~a! Slow variation of the nominal valuep* of the control
parameterp in Eq. ~18!. ~b! Measured interspike intervals durin
control and tracking.~c! Estimated value ofa1 during control and
tracking.
t

we

le
r
-

interspike intervals, is shown@8,14# to sample the dynamics
of the original continuous time dynamical system on so
Poincare´ surface of section and will be the time series we u
below for control and tracking.

The example we consider here is the following fou
dimensional chemical reaction model@15#,

ẋ5pw/~11w10!20.1x, ẏ50.1x20.2yz,
~18!

ż50.2z~y2w!, ẇ50.2zw20.1w.

When p5p*52.5, this system exhibits a chaotic attracto
Assume that the observed scalar variable isx itself andp is
the control parameter. By measuring the times between
cessive upward crossings of the thresholdxc51 by the x
versust function, we form the interspike interval time serie
$I n%. The reconstructed attractor in an (m53)-dimensional
delay-coordinate space has a dimension of 1.2 and conta
fixed point atzn5(48.40,48.40,48.40)T. The stabilization of
this fixed point is done in@8#. Now we consider the tracking
of the fixed point when the nominal value of the parame
p, p* drifts over time as shown in Fig. 3~a!. Figure 3~b!
shows the result of applying the tracking procedure of S
II. The estimated value ofa1 is shown in Fig. 3~c!. Here we
useN520 in Eq.~10! for updating both the fixed point po

FIG. 4. ~a! Slow drift of the parametera in the coupled Duffing
oscillator, Eq.~19!. ~b! Measured variablex5x11x2 during control
and tracking.~c! First two eigenvalues of the fixed point durin
control and tracking.
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FIG. 5. ~Color! ~a! Measured ribbon position
~red dots! during control and tracking as a func
tion of iteration n in the presence of a time
varying drive frequencyf ac ~solid black line!.
Note that once control was established it w
never lost, despite relatively fast variations
f ac. The dotted lines indicate a total change
frequency of 0.25 Hz in 250 iterations, a ra
greater than 1% per iteration.~b! Same ribbon
position data~red dots! as in ~a! superposed on
the bifurcation diagram~black dots! of the uncon-
trolled system.

FIG. 6. ~Color! Measured ribbon position~red
dots! during control and tracking as a function o
iteration n in the presence of a time-varying d
magnetic fieldHdc ~solid black line!. Note that
control was not turned on until after iteratio
n5150.

FIG. 7. ~Color! Measured ribbon position~red
dots! during control and tracking as a function o
iteration n in the presence of a time-varying a
magnetic fieldHac ~solid black line!.
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55 4941TRACKING UNSTABLE PERIODIC ORBITS IN . . .
sition and thea’s andb’s. Evidently, we are able to maintai
control during the course of environmental drift. Althoug
we do not have analytical results with which to compare
numerical results, we can still see quite clearly that
tracked fixed point anda1 follow the trend in the variation of
p* .

C. Coupled driven Duffing oscillator: Tracking fixed point
with multiple unstable directions

Consider the following five-dimensional system of tw
coupled driven Duffing oscillators:

ẍ11g ẋ11a~x1
32x1!1b1~x12x2!5p1sin~vt !,

~19!

ẍ21g ẋ21a~x2
32x2!1b2~x22x1!5psin~vt !.

For g50.632, a54.0, b150.1, b250.05, v52.1235,
p151.011, andp5p*5p1, Eq. ~19! exhibits a chaotic at-
tractor of dimensionD53.3. The scalar observable here
x5x11x2 and we sample the attractor every cycle of t
external forcing. The attractor, reconstructed using the t
series $xn% in an (m54)-dimensional delay-coordinate
space, has a dimensionD52.3.

The reconstructed attractor contains a fixed point
(0.54,0.54,0.54,0.54)T. This fixed point corresponds to th
synchronized period-one motion of the coupled oscillat
and has two unstable directions (u52). This orbit was origi-
nally stabilized in@8# using Eq.~7! with m54. Now we let
the environment, represented by the value ofa, drift slowly
over time, as shown in Fig. 4~a!. With p as the control pa-
rameter, we attempt to maintain control by applying t
adaptive control strategy developed earlier. The position
the tracked fixed point is shown in Fig. 4~b!. Here we use
N520 in Eq.~10! for updating both the fixed point positio
and thea’s andb’s. Again, although the theoretical value o
the fixed point position is not known, it is clear from th
figure that its movement is compatible with the movemen
a. Figure 4~c! show the values of the first two eigenvalues
the tracked fixed point. For the most part, both eigenval
have magnitudes greater than one.

IV. PHYSICAL EXPERIMENT: THE MAGNETOELASTIC
RIBBON

We have implemented and tested our tracking algorit
in a magnetoelastic ribbon system. This system, describe
detail in @16#, consists of a gravitationally buckled, amo
phous magnetoelastic ribbon whose Young’s modulus va
by as much as a factor of 10 as a function of the app
magnetic field parallel to its long axis. The ribbon is clamp
vertically and its deflection from the vertical is measur
optically near its base as the vertical magnetic fi
Hz(t)5Hdc1Hacsin(2pfact) is varied. The positionxn is
then recorded stroboscopically at a constant phase of
sinusoidal drive. Control perturbations are applied in
form of small offsets toHdc once per drive cycle, as com
puted from Eq.~7!. To test the effectiveness and versatili
of our adaptive control technique, we have made each of
three system parameters,Hdc, Hac, or f ac, slowly time de-
pendent, where ‘‘slow’’ is relative to one drive period. N
e
e

e

t

s

f

f
f
s

in

s
d
d

he
e

e

information about how these parameters drift is used in
control algorithm.

The chaotic attractor, when driven with static paramete
requires three dimensions in delay coordinates (m53) to
fully unfold. As the parameters slowly drift, the attract
translates and bends. The fixed point to be controlled
tracked has one unstable and two stable directions. In e
case, the recalculation of the control parameters was ba
on a history ofN514 previous measurements and appli
perturbations.

The first case of tracking with our adaptive control tec
nique is shown for a time varyingf ac in Fig. 5~a! ~black line!.
We note that, because the measurement was done at a
stant phaseof the drive, the Poincare´ map is constructed
properly and consistently, despite changes in the freque
This would not be the case if measurements were sim
performed at a fixed constant interval. The measured rib
position ~red dots! is shown in Fig. 5~a! as a function of
iterationn. As mentioned earlier, we useN514 in Eq.~10!
for updating the fixed point position and thea’s and b’s.
Figure 5~b! shows the tracked fixed point position@same data
set as in Fig. 5~a!# superposed on the natural, uncontroll
bifurcation diagram for the same range off ac variations.

Although we have no analytic confirmation that the co
puted fixed point position and control parameters corresp
to those at constant drive parameter, two aspects of Fig.~b!
yield secondary confirmation. First, from Fig. 5~b! we see
that the unstable fixed point we controlled and tracked is
same orbit that became unstable through a period-doub
bifurcation at aboutf ac51.05. It is known theoretically tha
this orbit often mediates the merging of two chaotic ban
into one chaotic band. The behavior of the tracked orbi
consistent with this theoretical observation in Fig. 5~b!, indi-
cating that the result of our tracking algorithm is indeed t
fixed point. A second confirmation is that the tracked orbit
Fig. 5~b! follows one continuous line as a function off ac,
despite the fact that it represents multiple passes through
same position in parameter space. This indicates that we
tracking the same fixed point, independent of history.

An equal degree of success was found in adapting to s
stantial variations in bothHdc andHac as drifting parameters
demonstrated in Figs. 6 and 7.

V. CONCLUSION

We have developed and experimentally implemented
adaptive control algorithm for maintaining control while th
physical environment in which the system is situated var
slowly with time. The technique is an extension of the ge
eralized high-dimensional control algorithm of Dinget al.
@8#. Updated control parameters are derived while contro
maintained and are based solely on recent short historie
the dynamics during control and the perturbations used
maintain control.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval R
search, Physical Sciences Division. B.G. was suppo
through the Office of Naval Research Postdoctoral Progr
M.D.’s research is also supported by a grant from the N
tional Institute of Mental Health to the Center for Comple
Systems, Florida Atlantic University.



.A

.
E
,
.

a,

ys

s-
s.
.

w

.

aw,
,

s.

ith
the
ve
alue
. For

rol,
m-

E.
nd

4942 55GLUCKMAN, SPANO, YANG, DING, IN, AND DITTO
@1# E. Ott, C. Grebogi, and J.A. Yorke, Phys. Rev. Lett.64, 1196
~1990!.

@2# For reviews, see T.A. Shinbrot, C. Grebogi, E. Ott, and J
Yorke, Nature~London! 363, 411~1993!; W.L. Ditto and L.M.
Pecora, Sci. Am.269, 78 ~1993!; G. Chen and X. Dong, Int. J
Bifur. Chaos3, 1363~1993!; E.R. Hunt and G. Johnson, IEE
Spectrum30, 32 ~1993!; R. Roy, Z. Gills, and K.S. Thornburg
Opt. Photon. News5, 8 ~1994!; E. Ott and M.L. Spano, Phys
Today48 ~5!, 34 ~1995!.

@3# B. Hunt and E. Ott, Phys. Rev. Lett.76, 2254~1996!.
@4# M. Ding, E. Ott, and C. Grebogi, Physica D74, 386 ~1994!;

Phys. Rev. E50, 4228 ~1994!; E.H. Abed, H.O. Wang, and
R.C. Chen, Physica D70, 154 ~1994!.

@5# I.B. Schwartz and I. Triandaf, Phys. Rev. A46, 7439~1992!.
@6# T.L. Carroll, I. Triandaf, I.B. Schwartz, and L.M. Pecor

Phys. Rev. A46, 6189~1992!; Z. Gills, C. Iwata, R. Roy, I.B.
Schwartz, and I. Triandaf, Phys. Rev. Lett.69, 3169~1992!; I.
Triandaf and I.B. Schwartz, Phys. Rev. E48, 718 ~1993!; S.
Bielawski, M. Bouazaoui, D. Derozier, and P. Glorieux, Ph
Rev. A 47, 3276 ~1993!; N.F. Rulkov, L.S. Tsimring, and
H.D.I. Abarbanel, Phys. Rev. E50, 314 ~1994!; V. Petrov,
M.J. Crowley, and K Showalter, Phys. Rev. Lett.72, 2955
~1994!; V. In, W.L. Ditto, and M.L. Spano, Phys. Rev. E51,
R2689~1995!; U. Dressler, T. Ritz, A. Schenck zu Schwein
berg, R. Doerner, B. Hu¨binger, and W. Martienssen, Phy
Rev. E 51, 1845 ~1995!; K. Konishi and H. Kokame, Phys
Lett. A 206, 203 ~1995!.

@7# V. Petrov, S. Metens, P. Borckmans, G. Dewel, and K. Sho
.

.

-

alter, Phys. Rev. Lett.75, 2895~1995!.
@8# M. Ding, W. Yang, V. In, W.L. Ditto, M.L. Spano, and B

Gluckman, Phys. Rev. E53, 4334~1996!.
@9# F. Takens, inDynamical Systems and Turbulence, edited by D.

Rand and L.S. Young~Springer-Verlag, Berlin, 1981!, p. 230;
N.H. Packard, J.P. Crutchfield, J.D. Farmer, and R.S. Sh
Phys. Rev. Lett.45, 712~1980!; J. P. Eckmann and D. Ruelle
Rev. Mod. Phys.57, 617 ~1985!.

@10# U. Dressler and G. Nitsche, Phys. Rev. Lett.68, 1 ~1992!; G.
Nitsche and U. Dressler, Physica D58, 153 ~1992!.

@11# P. So and E. Ott, Phys. Rev. E51, 2955~1995!.
@12# V. Petrov, E. Mihaliuk, S.K. Scott, and K. Showalter, Phy

Rev. E51, 3988~1995!.
@13# The tests presented are simply one method for dealing w

these statistical fluctuations, and are meant to eliminate
abnormally large fluctuations. Another method that we ha
successfully used is to update the control parameters to a v
somewhere between the current value and computed value
example,xnew* 50.9xold* 10.1xcalc* . This type of updating tends
to add an additional delay in the response time of the cont
but also minimizes oscillations in the estimated control para
eters.

@14# M. Ding and W. Yang, Phys. Rev. E55, 2397~1997!.
@15# G. Baier and S. Sahle, J. Chem. Phys.100, 8907~1994!.
@16# W.L. Ditto, S. Rauseo, R. Cawley, C. Grebogi, G.H. Hsu,

Kostelich, E. Ott, H.T. Savage, R. Segnan, M.L. Spano, a
J.A. Yorke, Phys. Rev. Lett.63, 923 ~1989!.


