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We consider the adaptive control of chaos in nonstationary high-dimensional dynamical systems. In particu-
lar, we propose and experimentally implement a technique to stabilize and track unstable periodic orbits based
on the use of time series. In our technique, the position of the periodic orbit and other parameters in the
controller are continually updated from recent measurements of the system state and perturbation histories,
while the environment, simulated by one or several of the system’s parameters, drifts independent of the
control algorithm. We demonstrate the effectiveness of the technique computationally forribe kap, a
chemical reaction model, and a coupled driven Duffing oscillator, and experimentally for a magnetoelastic
ribbon system[S1063-651X97)03405-3
PACS numbdss): 05.45+b

[. INTRODUCTION control is often achieved with small perturbations.
A potential difficulty with a nonadaptive application of

Recently, the theme of how to exploit the properties ofthis type of technique to real physical problems is that sys-
chaos to do useful things has attracted a great deal of intereséms’ environments are rarely static. It is often the case that
One arena of this research is the development of chaos conhanging ambient physical conditions, entering the system as
trol techniques, in which small perturbations are applied to garameters, causes change in the dynamics in an irregular
nonlinear system to stabilize its naturally occurring chaoticand unpredictable fashion. If small perturbation control is to
dynamics into a periodic orbftl,2]. It has been shown that be maintained, one must be able to continually update both
by doing so one may improve the system’s performancehe periodic orbit position and the other control parameters.
against general classes of critef&. Various scenarios have been considddin which a mo-

The basis for chaos control comes from the realizatiormentary loss of control due to environmental variations and
that a chaotic attractor has, embedded within it, an infiniteahe lack of adaptive control leads to catastrophic system fail-
number of unstable periodic orbits. The dynamics can beires.
roughly approximated by a series of approaches to and sub- A further advantage is that tracking techniques can also
sequent divergences from these orbits. Regularization of thiee applied to extend the stable operation range of a system.
dynamics, or control, is enacted by perturbing the system stn this case, parametric change may be done at the experi-
that it stays near one of these orbits. When viewed in thenenter’s discretion without loss of control.
delay coordinate state space, the neighborhood of an unstable In the present work we attempt to develop an adaptive
orbit can be separated into directions along which the dyeontrol strategy to track an unstable periodic orbit under a
namics either converge towafsdtable or diverge from(un-  changing environment. In particular, we are interested in do-
stablg the orbit. A control law, which prescribes the pertur- ing so for high-dimensional systems where the periodic orbit
bations, is designed such that the state space points atannot be effectively described by one stable and one un-
pushed into the subspace spanned by the stable directions.dtable direction. Tracking an unstable periodic orbit in the
the absence of the underlying equations of motion, the paeontext of chaos control was pioneered by Schwartz and Tri-
rameters needed for control are estimated from the time sendaf{5]. Additional work in this area can be found|[if,7].
ries. One salient feature of this control paradigm is that, since  The method we present in Sec. Il has two components: a
the target periodic orbit is part of the natural dynamics, thecontroller based on a general, high-dimensional control algo-

rithm, assuming the use of time ser{@, and a mechanism
to update the controller, requiring no assumptions of how the
*Present address: Center for Neuroscience Research, Childrerésivironment varies with time. We demonstrate our tech-
National Medical Center, Washington, DC 20010. Electronic ad-nique’s effectiveness in Sec. lll by applying it computation-

dress: Dgluckma@cnmc.orgn ally to a number of numerical examples, including thenbie
"Present address: Naval Surface Warfare Center, Carterock Divimap, a chemical reaction model, and a coupled Duffing os-
sion, West Bethesda, MD 20817. cillator. We then implement the technique in Sec. IV in an
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experimental physical system, a periodically driven, gravitaderivatives at z,=z*(p*) and Pp—m+1=Pn_m+2

tionally buckled metallic ribbon, which exhibits chaotic be- =...=p_ =p*, we obtain the linearized dynamics around
havior. Section V concludes this paper. the fixed point11],
II. THE METHOD 620+ 1= A2y +B™ 6Py _mi1
Let a dynamical system be described by the following +BM™ Y p,_msat - +BYSp,, ©)

k-dimensional map on some Poincangrface of section,
where 6z,=z—z*, dp;=p;—p*, and we have dropped the

reference ta for A andB since they are constant at the fixed
Xnr1=F(X,,p), (1)  point. We note that, due to the nature of the time series and
delay coordinates used here, most of the entries in the above

whereX e RX andp is the control parameter to be perturbed. matrix and vectors are zero. Specifically, we hf8k
Suppose that fop=p* Eq. (1) has a chaotic attractor. With-

out explicitly knowingF, we base our analysis and control

on a discretely measured time serigg} of some scalar 0 1 o --- 0
observablex,=h(X,). Using delay coordinategd] we re- 0 0 1

construct the high-dimensional dynamics frofr,} via ' ' _ ' )

Zn = (ZI("Il)’Zg‘IZ)’ =t 'ZE‘Im))T = (anm+lixnfm+2’ e an)Ti A: : : | : ; !
wherem is the dimension of the reconstructed phase space 0 0 0 R §

andT denotes matrix transpose. For large enoaglz, is a

global one-to-one representation of the variakle on the &m 8m-1 &m-2 ) gy
original attractor. Since the control is done by changing the
value of p according to a control law for every iteration of
the map, the reconstructed discrete mapzphas the form 0
0
Z,:1=G(Zy,Pn-m+1:Pn—m+2s - - - Pn)- i) B=| ’ (4)
Here, G generally depends on all the parameter variations 0
effective during the time intervah—m+1<t<n spanned Bil
by the delay vectog, [10-12. _

In the reconstructed phase space a fixed point for th&/herei=1.2,....m. _ o _
nominal system (i.e., when p=p*) is denoted by It has b(_—:-en pointed out in the p_e[sm] that it is undesir-
7 =G[Z*(p*),p*.p*, ... p*]. The Jacobian matrix for fible to derive control IaV\_/s based directly on IE.B) Foll_ow-
Eq. (2) is the followingmx m matrix [11]: ing So and Ot{11], we introduce a (&1— 1)-dimensional

expanded phase spacey,=(Xn_m+1:Xn—m+2y - -« Xn»
Pr-m+1:Pr-ms2s - - - Pn_1) ", t0 accommodate both dy-
A,=D, G(Z,,Pn—m+1+Pn-ms2s - - - Pn)- namical measurements and parameter changes. In this
" expanded phase space, near the unstable fixed point
The set ofm-dimensional column vectors, Y*=(x*, ... x*,p*,...,p*)T, the linearized dynamics
becomes
Bg):Dpn,HlG(Zn:pn—m+lapn—m+21 . --,pn), . -

. . Yni1—= Y*=A(Y,—Y*)+B(p,—p*), (5
for i=1,2,...,m characterize the effect of the control pa-
rameter variations on the dynamics. Evaluating all the partiawith

|
A BmM gm-1 gm-2 .. B©@
BV
0 1 0 - 0 0

- 0 O 0 1 -0 ~
A=l . : : : : , B=| ' (6)

0O O 0 0 1

0 O 0 0 - 0 ! (2m-1)x1

(2m—-1)x(2m—1)
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where0 indicates arm-dimensional row vector of 0’s. S b

To control, we apply a suitable perturbation X* =(Xp)n+ m<5pn>N:<Xn>N+ 9{ PN (10
6pn=pn—p*, following each measurement,, to keep the o
dynamics within the stable subspace/fFor a fixed point Where

with u unstable directions, the control law governing the S b
choice ofdp,, is derived to bg8] g=—2F (12)
1-%,.a,
u
op=—| > (M) v\ sy % At the end of this fitting cycle{x*)y is taken as the new
n = K n fixed point position. Although this method of calculating
(VIB)' H (A—Ny) x* may seem simplistic, by construction it guards against a
I=Li#k nonzero average idp. Therefore, its use maintains the
. ~ . small-perturbation quality of the control.
where\, are the unstable eigenvalues Af ordered in de- (2) Assuming now thak* is a constant, fronN iterates,

sgending absolute vglue, and the contravariant unstablge apply a least-squares fit to E8) to get the values of the
eigenvectors, are defined byATv,=\v,. It can be shown a’s andb’s. To do so accurately, we must enforce a small

[8] that the elements ofy=(v(" v, ... @™ ") are  amount of motion about the fixed point, because incessant
v(kf):E}=1am—j+1(?\k)'_7'7l_ for i<m, vP=1, and ap_pllcatlorll_s of (;]ontrol_suppressfthﬁ fnotlog S’rOL(ljr']f?' thle fixed
U(kl):E};Tbm7j+l()\k)1+mflflfor i~m. point, making the estimation of tha's and b’s difficult.

Next, we consider the mechanism to update the abovghiS technique is called interrogation by Petm\al_. [7]:) It
controller as the environment drifts over time. In terms of the'> Wﬁ.rlthvéh”.e to r;]ote that control car? often b_ehmaln;aln_ed for
measured variablg and the parametgs, from Eq. (3), we a whre urylng ¢ e,enwronment change without having to
have update thea's andb s. However, yvhen the control fails as a

result of the actual fixed point being too far removed from its
m m original known location, it is often too late to update the

* _ * a’s andb’s. By enforcing a small amount of natural local

Xnra™X _0121 AalXn—a+1 X “,Zo bgoPn—pr1- (8 dynamics, weyare able t% update t's andb’s more pre-

cisely and more frequently. Specifically, this is done as fol-
The quantitiesa,, bg, andx* in the above difference equa- lows. We monitor the absolute value of the perturbation
tion fully determine the control law in Eq7). In fact, a 6P, If it is smaller than some predetermined threshold
major step toward achieving initial control is to find ways to oPmin, We do not apply the perturbatiofi.e., setting
fit the unperturbed and perturbed dynamics near the fixedPn=0) and let the system evolve freely for that iterate.
point to obtain the values of these parameters. This is usuallj/nis proves effective both in our numerical and experimental
done with the least-squares techniqsee[8]). Here we sup- WOrk. _ , , _
pose that this step has been completed. Assume now that the The estimated values aft anda’s andb’s are subject to
system parameters have changed slightly, such that the ﬁxe%atlsncal fluqtuatlons that can be very significant at times.
point position and the shape of the linear region are modit'S @ Precaution, we test the veracity of the newly derived
fied, but not so much that the control is lost or that theParameters by checking whether the new values are close to

. o - i .
dynamics during control are outside the linear region of the;[he previous valuefl 3. In fitting x*, we define a maximal

new fixed point. In this case, E¢g) still applies, and we can distance between the newly estimated value and the previ-
point. S PPlIES, ously used value. If the measured distance exceeds this maxi-
use a short history dfl points incorporating the most recent

; al distance, we do not update the fixed point position. In
measurements of the system state and perturbations to r étsting both the’s and theb’s we rely on quantities derived

the control parameters. This refitting can be repeated as oft§fym a’s and b’s. Since thea’s describe the unperturbed
as once per measurement cycle and requiresamiori  gynamics near the unstable fixed point, the critical informa-
knowledge or assumptions about how the environment hagon they contain for control purposes is the directions of the
changed. stable and unstable manifolds of the fixed point. As a test of

Below we explain how to update the fixed point position the fit of thea’s, we place a maximal angular deviation of,
x* and the parameter's andb’s in two separate steps, since say, 15° between the new most unstable direction and the
each fitting step incorporates a different idea. In practiceprevious one. In order to test the new values of lires we
these steps can be combined into one step. limit the fractional difference in the quantity defined in Eq.

(1) Assume that’s andb’s remain constant for the du- (11). Specifically, in the experimental work reported in Sec.
ration of N iterates. From the expression in E§), we ob- IV, we require

tain (G G
m eale Zoldl 5 o5, (12)
* 2 * |gcalc gold|
Xn+1— X*IN= ap{Xn—aq+1—X .
e g a=1 Xt N We comment, however, that for a given system one should
" tailor the criteria to achieve the best result.
+B§=:l bs(Pn-p+a)n, 9 lll. NUMERICAL EXAMPLES

Now we apply the tracking technique above to three nu-
where()y denotes average over the history dfmeasure- merical examples chosen to illustrate various aspects of the
ments. Upon rearranging terms we have technique: the Heon map, a chemical reaction model, and a
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coupled driven Duffing oscillator. For the’Hen map, all the (a) 6

parameters in the control law can be calculated exactly in

terms of the original map parameters. Therefore, its study \/\
provides a way to check the fidelity of the parameter values . 4

estimated from time series using the procedure described in P

the preceding section. The chemical reaction model is an
autonomous system. Here the observed discrete variable is
the interval between successive crossings of some threshold
by the system state. It has been shd®ri4] that these in- 0
tervals, called interspike intervals, sample the dynamics of

the original continuous time series on some Poincairéace n
of section. Finally, the periodically driven coupled Duffing

0 10000 20000 30000 40000 50000

oscillator, probed at the integer multiples of the external (b) 25
driving period, is described by a four-dimensional discrete failure
map. The key point here is that the periodic orbit to be sta- 21 v
bilized and followed has two unstable directions. Xn 151
A. The Hénon map: An analytically tractable example 1]
The Haon map is 05 . , ' .
2 o 10000 20000 30000 40000 50000
Xn41=Pn= X3+ 0.3y, Ynr1=Xy. (13 n
Here we use a subscriptto denote the time dependence of © 25
the parametep,=p* + dp, during the course of control. ¢ ’
Assuming thatx is the observed scalar variable, from Eqg. 24
(13) this variable obeys the following second-order differ-
ence equation Xn 151
Xn+1:pn_xﬁ+0-3(nfl- (14 "
Reconstructing thex time series in a two-dimensional %3 10000 20000 30000 40000 50000
space (h=2), we obtain the delay vectar,=(z{",z{?)) n
=(X,—1,X,). From Eq.(14), the mapG for z, [see Eq(2)]
can be explicitly written as (d) 2 b
1 0
1 2 ——
(zm) _( 7 ) s 0 by
221 \pa— (272 +0.320)" ™
24
For p,=p*, the fixed point of interest is 34 _lag
x* =(—0.7+/0.49+ 4p*)/2. (16) *% 10000 20000 30000 40000 50000
n

Linearizing Eq.(15) aboutx* leads to
(1) (1) FIG. 1. (&) Slow variation of the nominal valug* of the control
v _ 0 1 2 n parameterp as a function of the iterata in the Heon map, Eq.
5251221 0.3 —2x* 52512) (13). (b) Result of updating only the fixed point position without
concurrently updating tha's andb’s. (c) Result of updating both

From the above equation, we identify the parameters in théhe fixed point position and th&s andb’s. (d) Estimated values of
matrix A and the vector B [see Eq. (3)] as thea’s andb’s from the time series during control and tracking.
a;=—2x*=0.7-0.49+4p*, a,=0.3,b;=1, andb,=0.

Let the parametep* vary over time as shown in Fig. fixed point in Fig. 1c). In addition, Fig. 1d) shows the
1(a). (Notice that in this case the varying parameter and thexstimated values oi’'s and b’s from the time seriegx,}.
control parameter are the sameigure Ib) shows the result These estimated values agree well with their actual analytical
of only updating the fixed point position without concur- yalues, given earlier. These results demonstrate that the con-
rently updating thea’s andb’s. It can be seen that the con- tro| and tracking procedure outlined in the preceding section
trol can be maintained for a while, but it eventually fails works effectively for the Heon map.
when the fixed point is too far removed from its original
location, where tha’s andb’s were initially obtained. Fig-

0
1

opn.  (17)

ure 1(c) shows the result of tracking the fixed point while B. A chemical reaction model: Tracking and control
updating both thea’s and b’s. Here we use a history of using interspike intervals

N =20 iterates in Eq(10). If the analytically computed po-

sition of the fixed point, Eq(16), is plotted as a function of In experimental problems, we expect to encounter two

time n, this plot coincides with the tracked position of the kinds of continuous time systems, autonomous and periodi-
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FIG. 2. Schematic illustration of the formation of interspike in- 074
tervals{l .} from a continuous time series.
0.6
X
cally driven. For a periodically driven system, a discrete " o5/
Poincaremap can be formed by sampling the dynamics at 04 ]
every period of the driving. We will show an example of ’
how to control and track unstable periodic orbits in such 03 ; : . .
systems in the next subsection. In the present subsection we 0 10000 20000 30000 40000 50000
introduce a technique to form a discrete Poinaaap- n
generated time series for autonomous systems.
Consider the schematic in Fig. 2, where a scalar variable(c) 06
of the system state is plotted against time. Choose a proper
= i - -1.0 1 4 /m\\
thresholdx=x.. We measure the intervals between succes ™ . 0
sive crossings of the threshold kgt) from a given direction e e
. . . N . . 1.4
(upward crossing in the figureThis time seriegl,}, called
18 _W }\'1
(a) 6 -2.2 T T T T
0 10000 20000 30000 40000 50000
5 n
P* 4 _ . ,
FIG. 4. (a) Slow drift of the parametew in the coupled Duffing
3] oscillator, Eq(19). (b) Measured variablg=x, +x, during control
and tracking.(c) First two eigenvalues of the fixed point during
2 . : , control and tracking.
0 50000 100000 150000 200000
n interspike intervals, is show{8,14] to sample the dynamics
(b) 485 of the original continuous time dynamical system on some
Poincaresurface of section and will be the time series we use
4801 below for control and tracking.
475 The example we consider here is the following four-
In 470 dimensional chemical reaction modéb],
46.5 v — 1 v —
x=pw/(1+w'%—0.1x, y=0.1x—0.2yz
46.0 : . . (18
0 50000 100000 150000 200000 ) .
n z=0.2z(y—w), w=0.2zw—0.1w.
(©) 4 When p=p* =2.5, this system exhibits a chaotic attractor.
Assume that the observed scalar variablg itself andp is
2 the control parameter. By measuring the times between suc-
a, ] cessive upward crossings of the threshgrjag=1 by thex
versust function, we form the interspike interval time series
41 {I,}. The reconstructed attractor in am+€ 3)-dimensional
delay-coordinate space has a dimension of 1.2 and contains a
S 50000 100000 150000 200000 f|>§ed_p0|nt atz,= (48.4Q,48.40,48.46) The_stablhzatlon pf
I this fixed point is done ifi8]. Now we consider the tracking

FIG. 3. (a) Slow variation of the nominal valug* of the control
parametemp in Eq. (18). (b) Measured interspike intervals during
control and tracking(c) Estimated value of; during control and

tracking.

of the fixed point when the nominal value of the parameter
p, p* drifts over time as shown in Fig.(8. Figure 3b)
shows the result of applying the tracking procedure of Sec.
Il. The estimated value dd; is shown in Fig. &). Here we
useN=20 in Eq.(10) for updating both the fixed point po-
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(a) _ e ©¥n
Fraguency

FIG. 5. (Color (a) Measured ribbon position
(red dot$ during control and tracking as a func-
| | | - | | | tion of iteration n in the presence of a time-
0 200 400 800 8OO 1000 1200 1400 varying drive frequencyf .. (solid black ling.

Note that once control was established it was

n never lost, despite relatively fast variations of

(b) = -~ Control Off fac. The dotted lines indicate a total change in

At - Contral On frequency of 0.25 Hz in 250 iterations, a rate
: AR et greater than 1% per iteratiorlb) Same ribbon
position data(red dot3 as in(a) superposed on
the bifurcation diagrantblack dot$ of the uncon-

trolled system.

o ; FIG. 6. (Color) Measured ribbon positiotred
£ dots during control and tracking as a function of
iterationn in the presence of a time-varying dc
magnetic fieldH 4. (solid black ling. Note that
control was not turned on until after iteration
n=150.

L0

(20) “H

T | T
0 500 1000 1500
n

FIG. 7. (Color) Measured ribbon positiofred
dots during control and tracking as a function of
iteration n in the presence of a time-varying ac
magnetic fieldH . (solid black line.

(e0) "H

T I |
0 2000 4000 6000
n
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sition and thea’s andb’s. Evidently, we are able to maintain information about how these parameters drift is used in the
control during the course of environmental drift. Although control algorithm.

we do not have analytical results with which to compare the The chaotic attractor, when driven with static parameters,
numerical results, we can still see quite clearly that the'equires three dimensions in delay coordinates=@) to

tracked fixed point and; follow the trend in the variation of fully unfold. As the parameters slowly drift, the attractor
p*. translates and bends. The fixed point to be controlled and

tracked has one unstable and two stable directions. In each
case, the recalculation of the control parameters was based

C. Coupled driven Duffing oscillator: Tracking fixed point on a history ofN=14 previous measurements and applied

with multiple unstable directions

perturbations.
Consider the following five-dimensional system of two  The first case of tracking with our adaptive control tech-
coupled driven Duffing oscillators: nique is shown for a time varyinfy,. in Fig. 5a@) (black line.
_ We note that, because the measurement was done at a con-
X1+ yx1+ a(x3—X1) + B1(X,— Xp) = p;Sin( wt), stant phaseof the drive, the Poincarenap is constructed

(19 properly and consistently, despite changes in the frequency.
This would not be the case if measurements were simply
Xo+ yXot a(X3—X,) + Ba(Xo— X1) = psin( wt). performed at a fixed constant interval. The measured ribbon
position (red dotg is shown in Fig. 5a) as a function of
For y=0.632, «a=4.0, 5;=0.1, B,=0.05, ©=2.1235, iterationn. As mentioned earlier, we usé¢=14 in Eq.(10)
p;=1.011, andp=p* =p,, Eq. (19) exhibits a chaotic at- for updating the fixed point position and tlees and b’s.
tractor of dimensiorD=3.3. The scalar observable here is Figure Fb) shows the tracked fixed point posititame data
X=X;+X, and we sample the attractor every cycle of theset as in Fig. &)] superposed on the natural, uncontrolled
external forcing. The attractor, reconstructed using the timeifurcation diagram for the same rangefgf variations.
series {x,} in an (m=4)-dimensional delay-coordinates  Although we have no analytic confirmation that the com-
space, has a dimensidh=2.3. puted fixed point position and control parameters correspond
The reconstructed attractor contains a fixed point ato those at constant drive parameter, two aspects of Fiy. 5
(0.54,0.54,0.54,0.54) This fixed point corresponds to the yield secondary confirmation. First, from Fig(bp we see
synchronized period-one motion of the coupled oscillatorghat the unstable fixed point we controlled and tracked is the
and has two unstable directions= 2). This orbit was origi- same orbit that became unstable through a period-doubling
nally stabilized in[8] using Eq.(7) with m=4. Now we let  bifurcation at abouf .= 1.05. It is known theoretically that
the environment, represented by the valuexpfrift slowly  this orbit often mediates the merging of two chaotic bands
over time, as shown in Fig.(d). With p as the control pa- into one chaotic band. The behavior of the tracked orbit is
rameter, we attempt to maintain control by applying theconsistent with this theoretical observation in Figo)5indi-
adaptive control strategy developed earlier. The position otating that the result of our tracking algorithm is indeed the
the tracked fixed point is shown in Fig(b}. Here we use fixed point. A second confirmation is that the tracked orbit in
N=20 in Eq.(10) for updating both the fixed point position Fig. 5b) follows one continuous line as a function bf;,
and thea’s andb’s. Again, although the theoretical value of despite the fact that it represents multiple passes through the
the fixed point position is not known, it is clear from the same position in parameter space. This indicates that we are
figure that its movement is compatible with the movement oftracking the same fixed point, independent of history.
«. Figure 4c) show the values of the first two eigenvalues of  An equal degree of success was found in adapting to sub-
the tracked fixed point. For the most part, both eigenvaluestantial variations in both 4. andH .. as drifting parameters,

have magnitudes greater than one. demonstrated in Figs. 6 and 7.
IV. PHYSICAL EXPERIMENT: THE MAGNETOELASTIC V. CONCLUSION
RIBBON We have developed and experimentally implemented an

We have implemented and tested our tracking algorithn?dap,tive con'trol algori.thm fgr maintaining cpntrol while th'e
in a magnetoelastic ribbon system. This system, described i"YSical environment in which the system is situated varies
detail in [16], consists of a gravitationally buckled, amor- SIOWly with time. The technique is an extension of the gen-
phous magnetoelastic ribbon whose Young’s modulus varie§'alized high-dimensional control algorithm of Dirgal.
by as much as a factor of 10 as a function of the applie 8]..Up_dated control parameters are derived while qontr_ol is
magnetic field parallel to its long axis. The ribbon is clampedma'nta'ned. and are based solely on recent sho'rt histories of
vertically and its deflection from the vertical is measuredtN€ dynamics during control and the perturbations used to

optically near its base as the vertical magnetic fielgMaintain control.
H,(t)=Hg.tH,sin(2nf,¢) is varied. The positionx,, is

then recorded stroboscopically at a constant phase of the

sinusoidal drive. Control perturbations are applied in the This work was supported by the Office of Naval Re-
form of small offsets toH 4. once per drive cycle, as com- search, Physical Sciences Division. B.G. was supported
puted from Eq.7). To test the effectiveness and versatility through the Office of Naval Research Postdoctoral Program.
of our adaptive control technique, we have made each of thel.D.’s research is also supported by a grant from the Na-
three system parametetd,., H,e, Or f,., slowly time de-  tional Institute of Mental Health to the Center for Complex
pendent, where “slow” is relative to one drive period. No Systems, Florida Atlantic University.
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