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Controlling chaos in high dimensions: Theory and experiment
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The main contribution of this work is the development of a high-dimensional chaos control method that is
effective, robust against noise, and easy to implement in experiment. Assuming no knowledge of the model
equations, the method achieves control by stabilizing a desired unstable periodic orbit with any number of
unstable directions, using small time-dependent perturbations of a single system parameter. Specifically, our
major results are as follows. First, we derive explicit control laws for time series produced by discrete maps.
Second, we show how to apply this control law to continuous-time problems by introducing straightforward
ways to extract from a continuous-time series a discrete time series that measures the dynamics of some
Poincaremap of the original system. Third, we illustrate our approach with two examples of high-dimensional
ordinary differential equations, one autonomous and the other periodically driven. Fourth, we present the result
on our successful control of chaos in a high-dimensional experimental system, demonstrating the viability of
the method in practical applications.

PACS numbe(s): 05.45+b

I. INTRODUCTION ality with an arbitrary number of unstable directions.
(iil) We show that for a continuous-time system, as would

Chaotic phenomena arise ubiquitously in natural systembe encountered in most experimental problems, simple meth-
and in man-made devicg&]. Past work has focused mainly ods can be used to extract from the continuous-time series a
on the discovery and characterization of chaotic behaviodiscrete-time series that probes the dynamics of some Poin-
occurring in situations where there is no goal-oriented intercare map in the original phase space. Specifically, for an
vention. Recently, ideas and techniques have been proposadtonomous system, this is done by measuring the times be-
to convert chaotic orbits to desired periodic ones by usingween successive crossings of some predetermined threshold
temporally programmed small contrd-9]. It is suggested by the continuous-time series. We call these times interspike
that by doing so one improves the system’s performancéntervals. For a periodically driven system, either the inter-
against some general classes of crit¢fi@]. This direction spike intervals or the more traditional stroboscopic samples
of research opens the possibility of utilizing the rich proper-can be used to form the discrete time series. In this fashion
ties of chaos in practical applications and has thus attractedthe explicit control law mentioned i) applies directly to
great deal of interest. In the present paper we consider thisontinuous-time systems. Other advantages of basing the
chaos control paradigm in systems where the equations afontrol method on discrete-time series generated by Poincare
motion are not known and the dynamical information is con-maps are also discussed.
tained in a time series obtained from observing a single sca- (iii) We illustrate our approach with two examples of or-
lar function of the original phase space variables. Our mairdinary differential equations, one an autonomous chemical
results are as follows. reaction model of four variables and the other a pair of

(i) Assuming that the time series is produced by a discreteoupled Duffing oscillators with periodic forcing, a five-
map we develop a high-dimensional chaos control methodimensional system. In the second example, the periodic or-
based on ideas proposed by So and [@tt Here we use bit to be stabilized has two unstable directions, and in the
map-generated time series to ensure that the coefficiensecond example, we consider the control of a period-2 orbit.
needed for the implementation of control are easy to estimate (iv) We have applied the control method to a physical
from experimental data. In addition, the expression of thesystem of a magnetoelastic ribbon driven by a sinusoidally
control law involves only the knowledge about the unstablevarying magnetic field. We have successfully achieved the
directions of the to-be-stabilized periodic orbit. This is ancontrol of high-dimensional chaos where other techniques
added practical benefit since such knowledge is often morbave failed to do so. We have also demonstrated the robust-
reliably obtained from time series. It is also worth emphasizness of the method by showing that it works effectively in
ing that in this method one only needs to vary a single exthe presence of rather substantial random noise.
ternal parameter to control a system of arbitrary dimension- The rest of this paper is organized as follows. In Sec. Il
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we present the method of chaos control. Here we leave some B. Stabilizing a fixed point

of the detailed calculations to the Appendix. Se_ction - we begin by considering the stabilization of a saddle
shows how to extract a Poincameap-generated discrete- fiyaq point that may have more than one unstable direction.
time series from a continuous-time system. We also discusg, s case, the control law to be derived admits an explicit

numerical results in this section. In. Sgc. IV we pr_esent theexpression. Moreover, the simple setting here allows us to
control results for the magnetoelastic ribbon experiment. W atier illustrate the main ideas involved.

summarize the paper in Sec. V. An unstable fixed poinf in the original chaotic attractor

whenp=p satisfies
Il. THE CONTROL METHOD

A. Delay coordinates X(p)=F(X(p),p). (4)
Consider &-dimensional map Reflected in the delay coordinate space we have
Xas2=F(Xa P), @ 2P)=G@P).pp, ... P, (5

whereX e R* andp is the chosen control parameter. Suppos
that for p=p Eq. (1) exhibits a chaotic attractor. Let the
scalar observation function be=h(X). Assuming naa pri-
ori knowledge of the equations of motién we carry out the
system analysis and control by using the time series

Svhere z(p) =[x(p),x(p), - - - x(p)]", T denoting matrix
transpose, and(p)=h(X(p)). The location of this fixed
point can be extracted from the time series. The procedure
for finding it is simplified by knowing that it lies on the
diagonal in them-dimensional reconstructed phase space.

{Xab={n(X)} ) To describe the effect of control parameter variations on
the linear dynamics near the fixed point, we introduce the
wheren=1,2,3, ... .(In Sec. Il we shall describe ways to MXm Jacobian matrix
extract such discrete-time series for both autonomous and
periodically drivencontinuous-timesystems. Employing de- An=D; G(Z,,Pn-m+1,Pn-m+2: - - - :Pn) (6)
lay coordinateg11], we reconstruct the high-dimensional
dynamics from{x,} via and a set ofm-dimensional column vectol¥]
Z$11> Xn-m+1 Bgm):Dpn,mHG(Znapn—m+1ipn—m+21 -+ Pn)
Z£12> Xn—m+2 1
Zy= . = : , Bgm ):Dpn7m+2G(zn’pn7m+1’pn7m+2:---vpn)v
(m) Xn
y4
n mx 1
wherem is the dimension of the reconstructed phase space. B§11>: DpnG(Zn Prems1sPrms2s - - - Pn)- (7)

Results in[11] state that, for large enough, z, is a global
one-to-one representation of the varialflg on the original Evaluating all

. o S . the partial derivatives at(p) and
attractor. Since the application of control in this work entails

—m+1=Pn_m+2=---=Pn,=P, We obtain near the fixed
that we change the value of the parameteaccording to a gginntwl Pn-m:2 Pn=P
control law at every iteration of Eq1), the discrete map for
1S Zn 11~ 2(p) = A2, = 2(p)) +B™(Pp_mi1—p) +BM™ Y
Zn+1=G(Zn 1Pn—m+1:Pn—m+2, - - - apn)v (3) X(pn—m+2_a+ et B(l)(pn_ﬁa (8)

where G generally depends on all the parameter variationsyhere we have dropped the reference o A andB’s since
effective during the time intervah—m+1<t<n spanned they are now constant matrix and vectors. It should be noted
by the delay vectog, [6]. that, due to the nature of the discrete-time series and delay

Below, by taking into account of the effect of the pastcoordinates used here, E®) in component form is
parameter changes specified in E8), we derive the control

laws that stipulates the choice pf, to convert the natural 2 (2)

. . .- . n+1 Z,
chaotic dynamics of Eq1) to a periodic orbit selected from 2 3)
an infinitely many contained in the chaotic attractor. The Znig Zy
parameter variations are assumed to be small around the : =
nominal valuep=p so that no new orbits are expected to be _

. f Zz(m—1) Z(m

created in the process. Thus we seek to exploit unstable pe- n+1 n
riodic orbits aIrea_dy existing_ in Fhe chaotic.attractor. This zZm, 9(Zn,Pn—m+1:Pn—m+2s - - - Pn)
control approach is also flexible in that by simply changing 9

to a different temporal programming of the paramgterne
can switch the dynamics from one periodic behavior to an-Thus most of the entries in th& matrix and theB vectors
other without major alterations to the system. are zero. Specifically,



4336 DING, YANG, IN, DITTO, SPANO, AND GLUCKMAN 53

0 1 0 ) point out for them=2 case that this strategy may sometimes
leads to instabilities in the control parameters. When this

0 0 1 o 0 happens, one generally needs larger and larger perturbations
A= : H : H : (10 in p in order to bring the trajectory to stay inside the stable
0 0 0 1 subspace. The control will eventually fail when either the
B B required Sp=p—p exceeds the predetermined maximum
a(m) a(m 1) a(m 2 ... a_(1)
mxm control dpax OF the value of6p becomes so large that the
linear approximation in Eq8) is no longer valid. So and Ott
and proposes an idea to systematically remedy the situgfiqn
0 (A similar approach can be found i8].) It involves the
introduction of a state-plus-parameters system, which in-
0 cludes the regular phase space variahlas well as all the
B =| , (12) previous variations of the parameferaccording to Eq(3).
The expanded phase space m-21 dimensional and the
0. state vectorY, assumes the form
b(l) mx1 Z,
wherei=1,2,...m. The use of Poincarmap-generated Pr—ms1
time series reduces our task of obtaining the emtirand
B to the estimation of only a®a®, ... a™, Yo=| Pn-m+2
b b®), ... bM from the experimental data. We remark :
that, although it is possible to obtain the valuesabf's and b1

the b()'s together at the same time, our experience indicates (2m-1)x1

that the best strategy is to find tiad)’s first based on the Based on Eq(8), the linear dynamics around the fixed point

unperturbed time series and then to apply the perturbation to B

calculate théd()’s. The perturbation is applied in such a way z(p)

that only onedp is not zero in the time interval spanned by

z,. See Sec. IV for more discussions on the estimation of _

a’s andb('s. Y=
Assume thatA in Eg. (10) has u unstable directions

and s stable directions §+u=m) with eigenvalues\;

satisfying [N q|>[No|>- >[N [>1> [Ny > [Nyso| > P

>|\n|. Lete denote the corresponding eigenvectors. Then gg [7]

possible control approach is to choose suitable parameter

variations according to Eq8) to push the trajectoryg, ., Y- Y=A(Y,—Y)+B(p,—p), (12)
into the stable subspace spanned by the stable directions
g,i=u+1u+2,... m However, Dressler and Nistch@] = where
|
A Bm pgm-1) pgm-2 .. B2
0 O 1 0 -0
~ 0 O 0 1 o0
A= , 13
0 0 0 0 1
0 0 0 0

(2m-1)X(2m—1)

with 0 an m-dimensional row vector of 0's and We note that the eigenvaluesAfare also the eigenvalues of
A with the corresponding eigenvectors
(1)
B €
0 0
B= (14) k= ’
0

(2m-1)x1 0
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i=1,2,...,m. Clearly, the aboven vectors are not enough v =am/n,

to span the (Bh— 1)-dimensional expanded phase space. To

do so one needs additionai—1 independent vectors. We v@ =M +am V)N,
argue that these vectors can be found in the null space of the

matrix A"~ %, Specifically, we show in the Appendix that the v =@ +aM /N,

subspace of the vectols satisfying A™ k=0 is (m—1)
dimensional and more importantly any setnof- 1 indepen-
dent vectors denotedd;, i=m+1m+2,...,2n—1, from

this space can be used together withk;, v V=" +a?)/Ny,
i=u+1u+2,...m, to form the basis of the stable sub-

Y) of A vi"=1 (19
spaceE4(Y) of A. k ,

Suppose that at tima the system trajectory falls in the
neighborhood of called the control region. To stabilize the
subsequent motion around this fixed point withunstable
directions, we attempt to apply small parametric perturba-
tions Py, Pn+ 1, - - - 10Pn+(u-1) iN Such a way that the de-
viation 8Y ;=YY lies entirely[7] in the stable sub-
spaceE(Y). After that we set the parameter ppand the
orbit approaches the fixed point under the natural dynamics.
Specifically, this control can be achieved as follows. Con- (2m71):( (Zm’2)+b(2))/)\
sider the transpose @ denotedA”. We know that bothA Yk Yk ks

andAT have the same eigenvalue spectrum. Furthermore, g8iote that the conditions in E@16) imply that the lengths of
shown in the Appendix, the contravariant unstable eigenveghe vectorsy, do not play a role. Thus we can sdf” =1 for

v<km+1>:b<m>/xk,

v(m+3 ( (m+2)+b(m 2))/)\k

torsv; determined by simplicity.] Solving these equations we get
_ i
ATV, =NV (15 o= am i+t i=12,... m-1,
=1
fori=1,2,...,u have the property that they are orthogonal p(m_1q
< o =1,

to the stable subspa&g(Y) of A. That is, the dot products
vikj=0 for j=u+1u+2,... mm+1m+2,...,an-1. -

By choosing the values qf,,pn+1,- - -Pn+u-1) Such that Z M=+ (n ) —m=i+L
V18 u=0, i=m+1m+2,...,a—1. (19)

.
OYniu=0, . .
V20¥n+u (16) We emphasize that all the formulas in E¢$7) and (19)

: needed for implementing the control are expressed explicitly
VI8Y1u=0, in terms of the variablea® andb(”, to be estimated from
the experimental time series, and the unstable eigenvalues
\;i of A'in Eq. (10).
we_place the deviationsY,,, in the stable subspace  For fixed points with one or two unstable directions, a
Eg(Y). In the Appendix we find from the equations (b6)  situation likely to be encountered in practice, the control law
the control law governing the parameter perturbatgn in Eq. (17) reduces to
needed at time to be

p =D_—<LVT SY (20)
(< 0" : R YC (-1
Pa=P— | 2 G Ve | 8Yn. (A7)
(VIE)-:H k (Ne=\y) foru=1 and to
p :p—_< ()\1)2 VI ()\2)2 VT sY
n n
Although the values of,,. 1, . . . ,Pn+y_1 can also be solved (ViB)(A1—Xg)  (VIB)(Ap—\y)
together withp, at time n, the presence of system noise (21)
makes it preferable to computg, using Eq.(17) at every for u=2
iteraten. '

The contravariant vectorg, are also solved explicitly.
From Eq.(15), by setting arbitrarilyu(km)= 1, we obtain the
following recursive relations to determine the other compo- Let a periodN orbit in the original phase space when
nentsv{’ of the vectorv,: p=p beX,(p),Xn:1(P), - - - Xnsn(P)=Xn(p). The corre-

C. Stabilizing a period-N orbit
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sponding scalar time serigx,(p)} is also periodic with a Choosing the values afp,,,5pn+1, - - - ,0Pniu—1 Such that
period of N. Suppose at timen the trajectoryz, in the Q) AT
m-dimensional reconstructed phase space comes near one of (Vnty) 6Yniu=0 (26)

the periodic points denoted byn(ﬁ._'l'he entire recon- o . . :
structed periodic orbit is thenz,(p), Zr.1(P), - ... for j=1,2,...,u, we place the deviatioaY,,,, entirely in

2, n(P)=2,(p). The JacobiamA, in Eq. (6) and theB, the stable subspa_uE%(YnM). From Eq.(26), with the aid of
vectors in Eq(7) evaluated along the orbit are now functions Ed- (25, we obtain theu equations
of n, satisfying the periodic condition#\,=A,y and u-1

Bl =B\ Introducing the expanded state-plus-parameters  (v()Tsy T cU),

phase space, we have, close to the periodic orbit, the linear k=0

iteration equation

u—1 u—1
T _5 i + v ) Bhsi—16Pnsio1 I V)
Yori=Ynri=Ansi-1(Ynric1= Ynyi-1) 21 (Vo) Bosi-10Pn- 1k1_=[i ntk
+'Bn+ifl(pn+ifl_:571 (22) 'F(Vglu)T§n+u—15pn+u—1::O’ (27)
wherei=1,2,3, ... andY,,;, A,,;, andB,,; are formed wherej=1,2,...,u. We solve these linear equations to ob-

in the same way as their counterparts in ER). Assume tain the control law governing the parameter perturbation
that there ares unstable directions associated with the orbit.p, needed at time to be
The control is accomplished by usingsmall perturbations
PnsPnt1s -« Pniu-1 to place the  deviation
OYnru=Yniu— Yniy into the stable subspadg(Y,,) of
the matrix Jp:y=Antu—1An+tu—2"""Antu_n- Since the ) L L
eigenvectors change from orbit point to orbit point the con-whereW=Det(W) with Wi%,:(ngrj)TBanlHE:leglk and
trol law can no longer be expressed as explicitly as in théd=Det(H) with h;=—(v{)TsYI/Z5cl), for j=1 and
case of alN=1 fixed point. Below we give a brief descrip- hjj=w;; for j# 1. Again, in order to compensate for the ef-
tion of the steps needed for arriving at the control law. fect of noise in experimental applications, we recalculate at
Let the unstable eigenvalues of the entire periodic orbit beach timen the value ofp,, even though by solving the
A1,N2, ..., \,. The stable subspace at the orbit pointequations in Eq(27) simultaneously we can at once obtain
Y,..; is determined by the matrix parameter perturbations for the futuresteps.
For the special case where the perldderbit has one
Jnﬂzﬂnﬂflﬂnﬂfz. . .KMFN_ (23)  unstable directiony=1), the control law takes the simple
form
As in the case of a fixed point there is no need to find this
subspace explicitly for the formulation of the control law. _ ( cDvhHT )
Instead we consider the eigenvalue problem Pn=P—| 0 75 1/ 9'n
((Vn+1) Bn)

__ H
pn:p+W1 (28)

(29

— ‘
‘Jn+iv§1&i:)‘ivwli ' (24 Evidently, this equation and Eq20) are identical for
N=1.

We remark that in the above we express the control laws
in terms of the unstable directions of the periodic orbit. This
approach offers several advantages over expressing control
laws using stable directions. First, in the expanded phase
space, one tends to have fewer unstable directions than stable
ones that include the null space. Second, since the estimated
matrix elements oA andB’s carry inevitable errors, fewer
calculations reduce the chance of severe error propagations
into the control law that, in turn, affect the control perfor-
mance. Third, it is an empirical fact that information about
unstable directions tends to be more reliably estimated from
experimental time series.

Multiplying Eq. (24) on both sides from the left by
An+i-n-1=Apti-1 We get

T~ . ~ .
I si—1Ansi- VL= N ARV

That is, the vectorv();,_, is parallel to the vector
AnsioVil;, namely,

~ N _
AnsiaVili=cllio vl (25)

This definition implies the periodic conditiarf’=c{) .
Iterating Eq.(22) u times yields

O nru=Antu-1Aniu-2 - AndYy IIl. NUMERICAL RESULTS

FAnru-1Anru-2' " Ans1Bndpn A. Formation of time series

+Antu-1An+u-2- " Ani2Bni16Pn+1 In experimental problems, we expect to encounter two
classes of continuous-time systems, autonomous and periodi-
cally driven. We discuss how to form discrete time series in

+A B S both cases so that the control laws developed in Sec. Il for

n+u—1Bn+u—20Pn+u-2 . . .
_ discrete maps are directly applicable.
+Bniu-1Pnsu_1- First, consider an autonomous system defined as
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additional variable one can convert a nonautononmous sys-
B tem to an autononmous one, the interspike intervals forma-
P,=DP+8P, tion method also applies here. Another more traditional
/ method of forming a discrete-time serips,} is by measur-
AN o ing x at timest,=nT+ T, (stroboscopic samplingFrom the
X, % ' \_//_\ ; the;orems of12], the Qynamics reconstructed frofm,} in a
‘ ; - suitable delay coordinates space represents the dynamics of
\ the PoincaramapZ,.;=P(Z,) in the original phase space,
! : . which, in turn, is equivalent to the continuous-time dynamics
\ ; L ‘,1 | described by the differential equations. Below we give two
| i pT ' p p,=P-8p, examples of controlling continuous-time chaotic systems us-
ol " ing the methods above.

FIG. 1. Schematic illustrating the formation of interspike inter-
vals from a continuous-time series and the effect of control on the B. Control example 1
intervals. Consider the following five-dimensional system of two
coupled driven Duffing oscillators:
dz/dt=G(Z,p), ) _

X1+ yXq + a(X3—Xq) + B1(X1—Xp) = pssin(wt),
where Ze R**1. Let x=h(Z) denote a scalar observable . : 3 .
function. Consider the plot ok versust. We form the XoF ¥XaF a(X3—Xz) + Ba(X2—X1) = psin(wt).
discrete-time series by measuring the intervgldetween
the (n—1)th andnth upward (or downward crossings of For ¥=0.632, a=4.0, 5,=0.1, 5,=0.05, ©=2.1235,
some predetermined threshole:x, (see Fig. 1L We argue  P1=1.011, andp=p=p,, Eq.(32) exhibits a chaotic attrac-
that these variablek,, which we call interspike intervals, tOf of dimensionD=3.3. The scalar observable here is
sample the dynamics of some Poiricanap in the original X=X11 X, and we sample the attractor every cycle of the
Z phase space. Specifically, at each crossing inxthiersus extgrnal forglng. The attracFor regonstructed using 'Fhe time
t plot, the conditiorx=h(Z) =x, is met. This condition de- S€r'es {X,} in an (m=4)-dimensional delay coordinates
fines ak-dimensional Poincarsurface of section in the origi- SPace has a dimensidn=2.3. Figure 23 shows the attrac-
nal Z space. Thus, is also the time between tha¢ 1)th 'O projected down to a two-dimensional space. The high-
and thenth crossings of the section. Suppose we parametriz8imensional character of this attractor is apparent.

this section by &-dimensional vectof). Then, the succes- The reconstructed attractor conta?ns a_fixed point
sive crossings of the plane from a given direction by a cha{N=1) at 2(p) =(0.54,0.54,0.54,0.53) with two unstable

(32

otic trajectory give rise to a Poincaneap directions (1=2). This fixed point corresponds to the syn-
chronized period-1 motion of the coupled oscillators. Our
Q,+1=P(Q,.p). (30 objective is to stabilize this motion. From numerically gen-

erated time series we estimateandb; used in theA matrix
Realizing that the interval, is uniquely determined by and the B vectors to be approximately®)=—3.05,

Qn-1, Namely, a®@=-223, a®=0.0, a®=0.016 and b®=-0.90,
3 b(®=—0.089,b=0.78, b(*=—0.056. The two unstable
ln=®(Qn-1), (32) eigenvalues aré.;=—1.85 and\,=—1.20. Applying the

control law in Eq.(17), we stabilize the fixed point as shown
in Fig. 2(b), which displays the behavior of the system be-
fore and after the control is turned on.

we complete the analogy between E@¥) and (1) and the
analogy between Eq$31) and(2).

Traditionally, one measures the continuous-time sexies
versust using equally spaced sampling intervals. In the re-
constructed phase space one obtains the Poinuae by
examining the crossings of some plane by the reconstructed Consider the four-dimensional autonomous chemical re-
trajectory. Due to the discreteness of the trajectory one introaction mode[13]
duces inevitable errors in the resulting Poincar@p through

C. Control example 2

interpolation. In contrast, our way of forming the discrete x=pw/(1+w™)—0.1x,

time series using interspike intervals avoids this problem by )

monitoring the analog signal and thus detecting the threshold y=0.1x-0.27,

crossing precisely. Furthermore, the reconstructed interspike . (33
intervals already obey a Poincaneap. In Fig. 1 we also z=0.22(y—w),

illustrate the effect of parametric perturbations on the inter- _

spike intervals. w=0.2zw—-0.1w.

Next, we consider a periodically forced system For p=p=2.5 this system exhibits a chaotic attractor of di-

dz/dt=G(Z,t,p), mensionD =2.2. Assume that the observed scalar variable is

x itself. By measuring the times between successive upward
whereZ e RX andG(Z,t+T,p)=G(Z,t,p). Letx=h(Z) be  crossings of some threshakd by thex versust function we
the scalar observable function. Since by introdudiras an  form the interspike interval time seriés,}. Reconstructing
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control on
60
(a)
507 M W
40
In 30+
20+
104
0 1 T 1
0 25 50 75 100
n
control on
3 ¥
(®)
24
14 control on
10
‘o Vh (b)
14 8
-2
[
'3 T T T x
0 25 50 75 100
n 44
FIG. 2. (a) Two-dimensional (n=2) reconstructed image of the
attractor from the coupled Duffing equations, E®2). High- 2+
dimensional nature of the dynamics is apparébf.The result of
applying anm=4 implementation of our control method. Here dis-
crete stroboscopic samples are connected with straight lines. 0 T T T
0 200 400 600
t

FIG. 3. Results of controlling the unstable period-1 orbit in the
this discrete time series in amé 3)-dimensional delay co- chemical reaction model E_(BS)_ using anm=3 implementation_of
ordinate space we obtain an attractor of dimension 1.2. |#§€ control.(8) The interspike intervals an) the corresponding
this attractor there is a fixed point N&E1) at continuous-time series.
z,=(48.40,48.40,48.40) and a period-2 orbit N=2) cy-
cling between z,(p)=(47.74,50.13,47.74) and Z,(p)
=(50.13,47.74,50.13) Both orbits are found to have one
unstable directiony(=1).

First, consider the control of the fixed point. Set=1.  X.=3. From the time series we estimate the elements of the
From the numerically generated time series we obtairA matrix and theB vectors atz;(p) to be atV=—1.56,
a®W=-1.33, a®=041, a®=-0.008 andb®=-1.25, a®=0.042, a®=6.0x10"° and b®=181, b®
b@=—3.20, b®=1.95. The unstable eigenvalue is calcu-=—3.32, b®®=161 and atz,(p) to be a)=2.15,
lated to bex,=—1.59. The result of applying Eq20) is  a®?=0.15, a®®=2.9x10"% and b= —-2.79, b(®=5.85,
shown in Fig. 3, where the system behavior before and aftep®=0.17. The control law in Eq29) is completely deter-
the control is turned on is displayed. Figur@)is the inter-  mined by these values. In Fig. 4 we show the result of con-
spike intervals and Fig.(B) gives the corresponding con- trol by displaying the interspike intervalg) and the corre-
tinuous time series. sponding continuous time seri€s) for before and after the

Next, consider the control of the period-2 orbit. Setcontrol is activated.
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control on

( a) 55

50+

45+

FIG. 5. Time series from the magnetoelastic ribbon recon-
structed in a three-dimensionahé& 3) delay coordinate space. The
40 T T J local dynamics near the fixed point is described by one unstable

0 25 50 75 100 (e;) and two stable directionsef ande;).

sensor is used to measure the ribbon’s position at a given
point. This sensor is mounted a short distance above the base
of the ribbon. To obtain chaos, we drive the ribbon with a
time-varing magnetic field in the formH(t)=H

+H  sin(2xft), which is applied along the vertical direction.
For f=1.03 Hz, H,.=0.961 Oe, andHy=H 4.=—1.350

(b) 10 Oe the ribbon exhibits chaotic oscillations. We choose
p=Hg. as the control parameter.

Denote the position of the ribbon measured by the photo-
81 nic sensor every driving period as . From visual inspec-
tions of the reconstructed attractor in the=2 space and
from some simple estimates it is apparent that the dynamical
behavior near the fixed point, which we wish to stabilize,
X cannot be effectively characterized by one stable direction
and one unstable direction. High-dimensional embedding
spaces are needed to unfold the local dynamics in this case.
This observation is further confirmed by our inability to
P bring about the desired control using the original Ott-
Grebogi-Yorke (OGY) method[2] (see below as well as
using the m=2 implementation of our control method,

control on

0 : ' . r which incorporates the effect of delay coordinates and is
0 200 400 600 800 equivalent to the Dressler and Nitsche’s meth6H
t Next we reconstruct the time series in an

(m=3)-dimensional space as shown in Fig. 5. On the cha-

FIG. 4. Results of controlling the unstable period-2 orbit in the otic attractor we identify an unstable periodic orbit of
chemical reaction model E(33) using anm=3 implementation of  period-1 by looking for saddle points lying on the diagonal.
the control.(a) The interspike intervals antb) the corresponding  From the experimental data this fixed point is determined to

continuous-time series. bez(p) = (6.35, 6.35, 6.35). To stabilize the system around
this unstable fixed point, we chooge=H. as the control
IV. EXPERIMENTAL RESULTS parameter. When the system state point falls in the vicinity

of the unstable fixed point, a small time-dependent change
was made to this parameter such that the next iterate would
Our experimental system consists of a magnetoelastitall onto the stable plane defined by the two stable eigenvec-
metal ribbon clamped at its lower end. The ribbon changesors. The perturbation size is calculated according to Eg.
its Young’s modulus by more than a factor of 10 in respons€20). To determine the matrix elemera$’, a®, anda®
to an external magnetic field and buckles under gravity as &r A in Eqg. (10) we consider a close return event by choos-
result. This highly nonlinear system is placed verticallying a point in the close vicinity of the fixed point and finding
within three mutually orthogonal pairs of Helmholtz coils. its preimage and two future iterates. The reason for using the
The two horizontal pairs of the Helmholtz coils are used forpreimage is to better represent the stable directions and the
counteracting the Earth’s magnetic field while the verticalreason for using two future iterates instead of just one is to
pair is used to supply an approximately uniform field alongpick up the negative sign often associated with the unstable
the ribbon’s length. Inside the Helmholtz coils a photoniceigenvalue. To guard against the detection of a false

A. Setup
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nearest neighbor in a three-dimensional embedding space we
also monitor the delay coordinate map in the=4 and
m=>5 space. From the true nearest-neighbor points we do a
least-squares fit to determirg@?), a®, anda® to a high
accuracy. Using 20 close return events we find
al’=-1.033 68,a®=1.7890, anda®=0.0935, respec-
tively. From the matrix the unstable eigenvalue was calcu-
lated to be\;=—1.9338. The values ob"), b(®, and

b®) are calculated from the experimental data when a per-
turbationp,, is applied at timen immediately after a point in

the map comes into the vicinity of the unstable fixed point. 457 0 10000 1se00 20000
The perturbation lasts for the full duration of the drive pe- n

riod. When the future section data are measured at time

n+1, n+2, andn+3, we calculate the coefficients™),

b®), andb® according to

control on

Xn(Volt)

control on

b(D ni1—aVox,—a@x,_1—a® ox,_» ® 2
5r ’ ]

2 3 S
b(g):&(n+2_a(1)5xn+l_a( )6Xn_a( )5Xn7]_ = ]
5P ' S o

2
b(3):5Xn+3_a(l)5xn+2_a(2)5xn+l_a(g)axn -1
Py
2

. y 0000 15000 20000
In the experiment we use a constaig,=0.038 Oe every °

time for perturbation. For a typical run in this experiment the
values ofb®, b@, andb® are determined to be 0.001 23  FIG. 6. Results of stabilizing the unstable period-1 orbit using

V/Oe, —0.000 118 V/Oe, and-0.000 414 V/Oe, respec- anm= 3 implementation of our control metho@) Time series and
tivelyj ' ’ (b) parameter perturbations. We note that the magnitudépgfis

about 0.4% of the nominal value pf wherep=H . is the dc field.

B. Results
to control the period-1 orbit in this case with the original

.Using th¢m=3 (iir;?plemerzit)a,tion of our control methad OGY method[2]. However, the interesting point is that, by
with the estimated'’’s andb'’’s as stated above, we have applying them=3 implementation of our method to the

fsucclessfullyz/o%oggglldeq Fhe chaloticboscilglsitions_ ?]f the ribbongz e orbit, we are able to achieve control with smaller pa-
or almost 'V ariving cyc e&@bout X h without any  rameter perturbations compared to the OGY case. This indi-
loss of control. Figure @ shows a portion of the experi-

i ies bef d after th licati ; Icates that in some situations, although the low-dimensional
mental time series elore and & er_t € app 'Ca“ot‘ of controle gl is effective, a higher-dimensional implementation
The control can be maintained indefinitely. Figuréb)6

h th rurbati lied to stabilize th iod-1 may prove to be more efficient. Details of this result are
Snows the perturbations appiied to stabilize the period- Or}f)lanned to be presented in a future paper where we consider
bit. Notice that the size of the perturbations is very small

. ~all the practical aspects of our control technique.
typically between=0.0054 Oe, or about 0.4% of the nomi- In applications, an important question is the impact of

nal dc fieldp=Hgc. Figure 1a) shows the contrast between ngise on the control performance. The unperturbed ribbon
the original OGY contro[2] and our high-dimensional con-  gystem has about 5% intrinsic noise. Our method is unaf-
trol with m=3 on the same attractor. After 830 iterates thefgcteqd by this amount of noise. To test the method further,
OGY control is turned on and is unable to hold the periodicye have also added parametric noise to the system and found
orbit even though there are numerous attempts on the closgat we are able to maintain control even in the presence of
returns. The perturbed orbits would come in along the stablgpoyt 109% of additional parametric noise, demonstrating the
direction, but once the orbit reaches the unstable fixed pointethod’s robustness. We thus believe that the technique pre-
it starts to depart from the vicinity of the fixed point. In gented in the paper is viable in practical problems where
contrast, when our high-dimensional control is activated thgnaos control in high-dimensions is desired. Again we wish

system is captured into the period-1 motion rapidly. We notgg present more detailed results on the issue of noise in a
that them=2 implementation of our method, which has the fytyre paper.

delay coordinates effect taken into account, also failed to
achieve proper control. This leads us to believe that for this
attractor one needs a higher-dimensional embedding space to
unfold the dynamics and implement control. Since Ott, Grebogi, and Yorke published their seminal
We have also studied another parameter setting where thmper on the control of cha$2], a great deal of experimen-
local dynamics near the fixed point can be effectively de-tal research in nonlinear dynamics has been dedicated to the
scribed by one stable and one unstable direction. We are abéxploration of various aspects of the OGY algorithm in a

V. CONCLUSION
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APPENDIX
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n

1. The null space of A"~1

Using matrix blocks we rewritd defined in Eq(13) as

- (A B
o 01(:Y Eontrol on comiol on A= ( ZO S) ,
o whereB is anmx (m—1) matrix with B its column vec-
S e tors, Zy is an (m—1)xm zero matrix, and
(=9
~ 0
3 : 010 --0
% 20'00. 40'.00 6000 ‘ao'oo 10000 12000 B
n 0 1
FIG. 7. Comparison of the OGY control and the=3 imple- 0 0 0 0 (m—1)X(m-1)

mentation of our control methoda) Time series andb) parameter

perturbations. It is easy to verify tha8™ ! is a matrix of zeros. This means

that the eigenvalue proble@™ k=0 hasm equations for

variety of systems. However, the success of the originaPm—1 unknowns from which one can find—1 indepen-
OGY theory is limited by the fact that it applies only to dent basis vectors to span the null vedtorin other words,
systems where the dynamics near the periodic orbit is acdthe null space oA™ ! is (m—1) dimensional.
equately described by one stable and one unstable direction.
In the past few years a number of high-dimensional algo-
rithms have been proposed to address this proljiéq9]. _
Due to the difficulties in obtaining the coefficients needed for We wish to show that v; from ATv,=\v;,
control and sensitivity to noise, these methods are found to=1,2,. .. ,u, is orthogonal to the stable subspace spanned
be difficult to implement experimentally. by k;, j=u+lu=2,...,2n—1. Consider j=u+1u

Our main contribution in this paper is the development of+2, ... m. Multiply Eq. (15) from both sides b)kJ-T. The
a high-dimensional chaos control method that is effectivdeft-hand side becomelszATvi=(Akj)Tvi=)\,-ijvi. Equat-
and easy to implement in experiments. Based on the use dfig it with the right-hand side\iijvi and using\; #\; we
time series and delay coordinates, the method requires onlyave kJTVi:ViTkj:O' Similarly, one can show thaA‘,—Tkj:O,
small perturbations of a single control parameter to stabiliz§ =m+1,m+2,...,2n—1, by considering the eigenvalue
a periodic orbit in an arbitrary dimensional delay coordinateproblem of A" 1 instead ofA. It is straightforward to see
embedding space with an arbitrary number of unstable direchat if the deviationsY ., lies entirely in the space d; ,
tions. In addition, by considering map-based systems ouf=y+1u+2,... mm+1m+2,...,2n—1, then its fu-
method offers the advantage that the coefficients needed f@iire evolution asymptotically approaches zero under re-
experimental implementation are easily and reliably es“'peated applications oA
mated from time series data. In this regard, simple methods
are proposed to extract such map-based time series from
continuous-time systems. The effectiveness of the control
method is demonstrated when applied to two examples of lterating Eq.(12) u times yields
ordinary differential equations and to a physical experiment ~. 1 ~
of a magnetoelastic ribbon driven by a sinusoidally varying ~ 9Yn+u=A"8Y,+ AT "Bop,+ A" “Bopniyt - -
magnetic field. Robust control is achieved in all cases. Fur-
thermore, we mention that the method is not sensitive to
noise and works well even in the presence of substantial
noise. From Eq.(16) we get

2. The unstable eigenvectors of A

3. The derivation of the control law Eq. (17) from Eq. (16)

+§5pn+u—1-
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AT and
AT op AN 2Pt OPniu_1=— | —==| Y4, _ _ _
1 Pn 1 Pn+1 Pn+u-1 (VIB) n )\l{ 1 )\l{ 2 )\g 3 1
)\ufl )\u—z )\uf3
- - Av) D= Det| ° 2 2 (A2)
N3 “OPpt Ny “OPpsat -t OPnry—1= 1= ns ; ; :
(v2B) NU—L ju-2 ju-3 1
u u u uxu
: u,,T
)\3—15pn+)\3—25pn+1+ L + SPpsu1=— )‘l;\iu 5Y,,. By recognizing thaD in (AZ) is a slight _variant of the stan-
(v,B) dard Vandermonde determindri4] we find

Theseu linear equations contain unknowns. Using Cram-
er's rule we expresp, as

_C
pn=p+51
where
—[AWI/(VIB)]SY, A2 Ay 1
c_pel TPVHVEBISY, AP NS
—[NVI(viB) 1Y, A2 AT
(A1)

D=(— 1)(d2—d)/2 H

1L (N —\i).
l<i<j=u

Expanding the determinant in EGAL1) about the first col-
umn, the resulting cofactors are again variants of the Van-
dermonde matrix. This leads us to
u

(— 1)k+(d2—3d+2)/2[)\
=1

c= U/ (vIB)18Y,

k

LS O Vb W F
I<i<jsu,i#k,j#k

After some algebra we obtain E(QL7).
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