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The main contribution of this work is the development of a high-dimensional chaos control method that is
effective, robust against noise, and easy to implement in experiment. Assuming no knowledge of the model
equations, the method achieves control by stabilizing a desired unstable periodic orbit with any number of
unstable directions, using small time-dependent perturbations of a single system parameter. Specifically, our
major results are as follows. First, we derive explicit control laws for time series produced by discrete maps.
Second, we show how to apply this control law to continuous-time problems by introducing straightforward
ways to extract from a continuous-time series a discrete time series that measures the dynamics of some
Poincare´ map of the original system. Third, we illustrate our approach with two examples of high-dimensional
ordinary differential equations, one autonomous and the other periodically driven. Fourth, we present the result
on our successful control of chaos in a high-dimensional experimental system, demonstrating the viability of
the method in practical applications.

PACS number~s!: 05.45.1b

I. INTRODUCTION

Chaotic phenomena arise ubiquitously in natural systems
and in man-made devices@1#. Past work has focused mainly
on the discovery and characterization of chaotic behavior
occurring in situations where there is no goal-oriented inter-
vention. Recently, ideas and techniques have been proposed
to convert chaotic orbits to desired periodic ones by using
temporally programmed small controls@2–9#. It is suggested
that by doing so one improves the system’s performance
against some general classes of criteria@10#. This direction
of research opens the possibility of utilizing the rich proper-
ties of chaos in practical applications and has thus attracted a
great deal of interest. In the present paper we consider this
chaos control paradigm in systems where the equations of
motion are not known and the dynamical information is con-
tained in a time series obtained from observing a single sca-
lar function of the original phase space variables. Our main
results are as follows.

~i! Assuming that the time series is produced by a discrete
map we develop a high-dimensional chaos control method
based on ideas proposed by So and Ott@7#. Here we use
map-generated time series to ensure that the coefficients
needed for the implementation of control are easy to estimate
from experimental data. In addition, the expression of the
control law involves only the knowledge about the unstable
directions of the to-be-stabilized periodic orbit. This is an
added practical benefit since such knowledge is often more
reliably obtained from time series. It is also worth emphasiz-
ing that in this method one only needs to vary a single ex-
ternal parameter to control a system of arbitrary dimension-

ality with an arbitrary number of unstable directions.
~ii ! We show that for a continuous-time system, as would

be encountered in most experimental problems, simple meth-
ods can be used to extract from the continuous-time series a
discrete-time series that probes the dynamics of some Poin-
caré map in the original phase space. Specifically, for an
autonomous system, this is done by measuring the times be-
tween successive crossings of some predetermined threshold
by the continuous-time series. We call these times interspike
intervals. For a periodically driven system, either the inter-
spike intervals or the more traditional stroboscopic samples
can be used to form the discrete time series. In this fashion
the explicit control law mentioned in~i! applies directly to
continuous-time systems. Other advantages of basing the
control method on discrete-time series generated by Poincare´
maps are also discussed.

~iii ! We illustrate our approach with two examples of or-
dinary differential equations, one an autonomous chemical
reaction model of four variables and the other a pair of
coupled Duffing oscillators with periodic forcing, a five-
dimensional system. In the second example, the periodic or-
bit to be stabilized has two unstable directions, and in the
second example, we consider the control of a period-2 orbit.

~iv! We have applied the control method to a physical
system of a magnetoelastic ribbon driven by a sinusoidally
varying magnetic field. We have successfully achieved the
control of high-dimensional chaos where other techniques
have failed to do so. We have also demonstrated the robust-
ness of the method by showing that it works effectively in
the presence of rather substantial random noise.

The rest of this paper is organized as follows. In Sec. II
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we present the method of chaos control. Here we leave some
of the detailed calculations to the Appendix. Section III
shows how to extract a Poincare´-map-generated discrete-
time series from a continuous-time system. We also discuss
numerical results in this section. In Sec. IV we present the
control results for the magnetoelastic ribbon experiment. We
summarize the paper in Sec. V.

II. THE CONTROL METHOD

A. Delay coordinates

Consider ak-dimensional map

Xn115F~Xn ,p!, ~1!

whereXPRk andp is the chosen control parameter. Suppose
that for p5 p̄ Eq. ~1! exhibits a chaotic attractor. Let the
scalar observation function bex5h(X). Assuming noa pri-
ori knowledge of the equations of motionF, we carry out the
system analysis and control by using the time series

$xn%5$h~Xn!%, ~2!

wheren51,2,3, . . . .~In Sec. III we shall describe ways to
extract such discrete-time series for both autonomous and
periodically drivencontinuous-timesystems.! Employing de-
lay coordinates@11#, we reconstruct the high-dimensional
dynamics from$xn% via

zn5S zn
~1!

zn
~2!

A

zn
~m!

D 5S xn2m11

xn2m12

A

xn
D

m31

,

wherem is the dimension of the reconstructed phase space.
Results in@11# state that, for large enoughm, zn is a global
one-to-one representation of the variableXn on the original
attractor. Since the application of control in this work entails
that we change the value of the parameterp according to a
control law at every iteration of Eq.~1!, the discrete map for
zn is

zn115G~zn ,pn2m11 ,pn2m12 , . . . ,pn!, ~3!

whereG generally depends on all the parameter variations
effective during the time intervaln2m11<t<n spanned
by the delay vectorzn @6#.

Below, by taking into account of the effect of the past
parameter changes specified in Eq.~3!, we derive the control
laws that stipulates the choice ofpn to convert the natural
chaotic dynamics of Eq.~1! to a periodic orbit selected from
an infinitely many contained in the chaotic attractor. The
parameter variations are assumed to be small around the
nominal valuep5 p̄ so that no new orbits are expected to be
created in the process. Thus we seek to exploit unstable pe-
riodic orbits already existing in the chaotic attractor. This
control approach is also flexible in that by simply changing
to a different temporal programming of the parameterp one
can switch the dynamics from one periodic behavior to an-
other without major alterations to the system.

B. Stabilizing a fixed point

We begin by considering the stabilization of a saddle
fixed point that may have more than one unstable direction.
In this case, the control law to be derived admits an explicit
expression. Moreover, the simple setting here allows us to
better illustrate the main ideas involved.

An unstable fixed pointX in the original chaotic attractor
whenp5 p̄ satisfies

X~ p̄!5F„X~ p̄!,p̄…. ~4!

Reflected in the delay coordinate space we have

z~ p̄!5G„z~ p̄!,p̄,p̄, . . . ,p̄…, ~5!

where z̄( p̄)5@ x̄( p̄),x̄( p̄), . . . ,x̄( p̄)#T, T denoting matrix
transpose, andx̄( p̄)5h„X( p̄)…. The location of this fixed
point can be extracted from the time series. The procedure
for finding it is simplified by knowing that it lies on the
diagonal in them-dimensional reconstructed phase space.

To describe the effect of control parameter variations on
the linear dynamics near the fixed point, we introduce the
m3m Jacobian matrix

An5Dzn
G~zn ,pn2m11 ,pn2m12 , . . . ,pn! ~6!

and a set ofm-dimensional column vectors@7#

Bn
~m!5Dpn2m11

G~zn ,pn2m11 ,pn2m12 , . . . ,pn!,

Bn
~m21!5Dpn2m12

G~zn ,pn2m11 ,pn2m12 , . . . ,pn!,

A

Bn
~1!5Dpn

G~zn ,pn2m11 ,pn2m12 , . . . ,pn!. ~7!

Evaluating all the partial derivatives atz̄( p̄) and
pn2m115pn2m125•••5pn5 p̄, we obtain near the fixed
point

zn112 z̄~ p̄!5A„zn2 z̄~ p̄!…1B~m!~pn2m112 p̄!1B~m21!

3~pn2m122 p̄!1•••1B~1!~pn2 p̄!, ~8!

where we have dropped the reference ton in A andB’s since
they are now constant matrix and vectors. It should be noted
that, due to the nature of the discrete-time series and delay
coordinates used here, Eq.~3! in component form is

S zn11
~1!

zn11
~2!

A

zn11
~m21!

zn11
~m!

D 5S zn
~2!

zn
~3!

A

zn
~m!

g~zn ,pn2m11 ,pn2m12 , . . . ,pn!

D .

~9!

Thus most of the entries in theA matrix and theB vectors
are zero. Specifically,
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A5S 0 1 0 ••• 0

0 0 1 ••• 0

A A A A A

0 0 0 ••• 1

a~m! a~m21! a~m22!
••• a~1!

D
m3m

~10!

and

B~ i !5S 0

0

A

0

b~ i !

D
m31

, ~11!

where i51,2, . . . ,m. The use of Poincare´-map-generated
time series reduces our task of obtaining the entireA and
B( i ) to the estimation of only a(1),a(2), . . . ,a(m),
b(1),b(2), . . . ,b(m) from the experimental data. We remark
that, although it is possible to obtain the values ofa( i )’s and
theb( i )’s together at the same time, our experience indicates
that the best strategy is to find thea( i )’s first based on the
unperturbed time series and then to apply the perturbation to
calculate theb( i )’s. The perturbation is applied in such a way
that only onedp is not zero in the time interval spanned by
zn . See Sec. IV for more discussions on the estimation of
a( i )’s andb( i )’s.

Assume thatA in Eq. ~10! has u unstable directions
and s stable directions (s1u5m) with eigenvaluesl i
satisfying ul1u.ul2u.•••.uluu.1.ulu11u.ulu12u.•••

.ulmu. Let ei denote the corresponding eigenvectors. Then a
possible control approach is to choose suitable parameter
variations according to Eq.~8! to push the trajectoryzn11
into the stable subspace spanned by the stable directions
ei , i5u11,u12, . . . ,m. However, Dressler and Nistche@6#

point out for them52 case that this strategy may sometimes
leads to instabilities in the control parameters. When this
happens, one generally needs larger and larger perturbations
in p in order to bring the trajectory to stay inside the stable
subspace. The control will eventually fail when either the
required dp5p2 p̄ exceeds the predetermined maximum
control dpmax or the value ofdp becomes so large that the
linear approximation in Eq.~8! is no longer valid. So and Ott
proposes an idea to systematically remedy the situation@7#.
~A similar approach can be found in@8#.! It involves the
introduction of a state-plus-parameters system, which in-
cludes the regular phase space variablezn as well as all the
previous variations of the parameterp according to Eq.~3!.

The expanded phase space is 2m21 dimensional and the
state vectorYn assumes the form

Yn5S zn
pn2m11

pn2m12

A

pn21

D
~2m21!31

.

Based on Eq.~8!, the linear dynamics around the fixed point

Y5S z~ p̄!

p̄

p̄

A

p̄

D
is @7#

Yn112Y5Ã~Yn2Y!1B̃~pn2 p̄!, ~12!

where

Ã 5S A B~m! B~m21! B~m22!
••• B~2!

0 0 1 0 ••• 0

0 0 0 1 ••• 0

A A A A A A

0 0 0 0 ••• 1

0 0 0 0 ••• 0

D
~2m21!3~2m21!

, ~13!

with 0 anm-dimensional row vector of 0’s and

B̃ 5S B~1!

0

A

0

1

D
~2m21!31

. ~14!

We note that the eigenvalues ofA are also the eigenvalues of
Ã with the corresponding eigenvectors

k i5S ei
0

A

0

0

D ,
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i51,2, . . . ,m. Clearly, the abovem vectors are not enough
to span the (2m21)-dimensional expanded phase space. To
do so one needs additionalm21 independent vectors. We
argue that these vectors can be found in the null space of the
matrix Ãm21. Specifically, we show in the Appendix that the
subspace of the vectorsk satisfying Ãm21k50 is (m21)
dimensional and more importantly any set ofm21 indepen-
dent vectors denotedk i , i5m11,m12, . . . ,2m21, from
this space can be used together withk i ,
i5u11,u12, . . . ,m, to form the basis of the stable sub-
spaceEs(Y) of Ã.

Suppose that at timen the system trajectory falls in the
neighborhood ofY called the control region. To stabilize the
subsequent motion around this fixed point withu unstable
directions, we attempt to applyu small parametric perturba-
tionsdpn ,dpn11 , . . . ,dpn1(u21) in such a way that the de-
viation dYn1u5Yn1u2Y lies entirely@7# in the stable sub-
spaceEs(Y). After that we set the parameter top̄ and the
orbit approaches the fixed point under the natural dynamics.
Specifically, this control can be achieved as follows. Con-
sider the transpose ofÃ denotedÃT. We know that bothÃ
andÃT have the same eigenvalue spectrum. Furthermore, as
shown in the Appendix, the contravariant unstable eigenvec-
tors vi determined by

ÃTvi5l ivi ~15!

for i51,2, . . . ,u have the property that they are orthogonal
to the stable subspaceEs(Y) of Ã. That is, the dot products
vi
Tk j50 for j5u11,u12, . . . ,m,m11,m12, . . . ,2m21.
By choosing the values ofpn ,pn11 ,. . .,pn1(u21) such that

v1
TdYn1u50,

v2
TdYn1u50,

A

vu
TdYn1u50,

~16!

we place the deviationdYn1u in the stable subspace
Es(Y). In the Appendix we find from the equations in~16!
the control law governing the parameter perturbationpn
needed at timen to be

pn5 p̄2S (
k51

u
~lk!

u

~vk
TB̃! )

i51,iÞk

u

~lk2l i !

vk
TD dYn . ~17!

Although the values ofpn11 , . . . ,pn1u21 can also be solved
together withpn at time n, the presence of system noise
makes it preferable to computepn using Eq.~17! at every
iteraten.

The contravariant vectorsvk are also solved explicitly.
From Eq.~15!, by setting arbitrarilyvk

(m)51, we obtain the
following recursive relations to determine the other compo-
nentsvk

( i ) of the vectorvk :

vk
~1!5a~m!/lk ,

vk
~2!5~vk

~1!1a~m21!!/lk ,

vk
~3!5~vk

~2!1a~m22!!/lk ,

A

vk
~m21!5~vk

~m22!1a~2!!/lk ,

vk
~m!51, ~18!

vk
~m11!5b~m!/lk ,

vk
~m12!5~vk

~m11!1b~m21!!/lk ,

vk
~m13!5~vk

~m12!1b~m22!!/lk ,

A

vk
~2m21!5~vk

~2m22!1b~2!!/lk .

@Note that the conditions in Eq.~16! imply that the lengths of
the vectorsvk do not play a role. Thus we can setvk

(m)51 for
simplicity.# Solving these equations we get

vk
~ i !5(

j51

i

a~m2 j11!)/~lk!
i2 j11, i51,2, . . . ,m21,

vk
~m!51,

vk
~ i !5 (

j51

i2m

b~m2 j11!/~lk!
i2m2 j11,

i5m11,m12, . . . ,2m21. ~19!

We emphasize that all the formulas in Eqs.~17! and ~19!
needed for implementing the control are expressed explicitly
in terms of the variablesa( i ) andb( i ), to be estimated from
the experimental time series, and the unstable eigenvalues
l i of A in Eq. ~10!.

For fixed points with one or two unstable directions, a
situation likely to be encountered in practice, the control law
in Eq. ~17! reduces to

pn5 p̄2S l1

~v1
TB̃!

v1
TD dYn ~20!

for u51 and to

pn5 p̄2S ~l1!
2

~v1
TB̃!~l12l2!

v1
T1

~l2!
2

~v2
TB̃!~l22l1!

v2
TD dYn

~21!

for u52.

C. Stabilizing a period-N orbit

Let a period-N orbit in the original phase space when
p5 p̄ beXn( p̄),Xn11( p̄), . . . ,Xn1N( p̄)5Xn( p̄). The corre-
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sponding scalar time series$x̄n( p̄)% is also periodic with a
period of N. Suppose at timen the trajectoryzn in the
m-dimensional reconstructed phase space comes near one of
the periodic points denoted byzn( p̄). The entire recon-
structed periodic orbit is thenzn( p̄), zn11( p̄), . . . ,
zn1N( p̄)5zn( p̄). The JacobianAn in Eq. ~6! and theBn
vectors in Eq.~7! evaluated along the orbit are now functions
of n, satisfying the periodic conditionsAn5An1N and
Bn
( i )5Bn1N

( i ) . Introducing the expanded state-plus-parameters
phase space, we have, close to the periodic orbit, the linear
iteration equation

Yn1 i2Yn1 i5Ãn1 i21~Yn1 i212Yn1 i21!

1B̃n1 i21~pn1 i212 p̄!, ~22!

where i51,2,3, . . . andYn1 i , Ãn1 i , and B̃n1 i are formed
in the same way as their counterparts in Eq.~12!. Assume
that there areu unstable directions associated with the orbit.
The control is accomplished by usingu small perturbations
pn ,pn11 , . . . ,pn1u21 to place the deviation
dYn1u5Yn1u2Yn1u into the stable subspaceEs(Yn1u) of
the matrix Jn1u5Ãn1u21Ãn1u22•••Ãn1u2N . Since the
eigenvectors change from orbit point to orbit point the con-
trol law can no longer be expressed as explicitly as in the
case of anN51 fixed point. Below we give a brief descrip-
tion of the steps needed for arriving at the control law.

Let the unstable eigenvalues of the entire periodic orbit be
l1 ,l2 , . . . ,lu . The stable subspace at the orbit point
Ȳn1 i is determined by the matrix

Jn1 i5Ãn1 i21Ãn1 i22•••Ãn1 i2N . ~23!

As in the case of a fixed point there is no need to find this
subspace explicitly for the formulation of the control law.
Instead we consider the eigenvalue problem

Jn1 i
T vn1 i

~ j ! 5l jvn1 i
~ j ! . ~24!

Multiplying Eq. ~24! on both sides from the left by
Ãn1 i2N215Ãn1 i21 we get

Jn1 i21
T Ãn1 i21vn1 i

~ j ! 5l j Ãn1 i21vn1 i
~ j ! .

That is, the vectorvn1 i21
( j ) is parallel to the vector

Ãn1 i21
T vn1 i

( j ) , namely,

Ãn1 i21
T vn1 i

~ j ! 5cn1 i21
~ j ! vn1 i21

~ j ! . ~25!

This definition implies the periodic conditioncn
( j )5cn1N

( j ) .
Iterating Eq.~22! u times yields

dYn1u5Ãn1u21Ãn1u22•••ÃndYn

1Ãn1u21Ãn1u22•••Ãn11B̃ndpn

1Ãn1u21Ãn1u22•••Ãn12B̃n11dpn11

A

1Ãn1u21B̃n1u22dpn1u22

1B̃n1u21dpn1u21 .

Choosing the values ofdpn ,dpn11 , . . . ,dpn1u21 such that

~vn1u
~ j ! !TdYn1u50 ~26!

for j51,2, . . . ,u, we place the deviationdYn1u entirely in
the stable subspaceEs(Yn1u). From Eq.~26!, with the aid of
Eq. ~25!, we obtain theu equations

~vn
~ j !!TdYn)

k50

u21

cn1k
~ j !

1 (
i51

u21 S ~vn1 i
~ j ! !TB̃n1 i21dpn1 i21)

k5 i

u21

cn1k
~ j ! D

1~vn1u
~ j ! !TB̃n1u21dpn1u2150, ~27!

where j51,2, . . . ,u. We solve these linear equations to ob-
tain the control law governing the parameter perturbation
pn needed at timen to be

pn5 p̄1
H

W
, ~28!

whereW5Det(W) with wi j5(vn1 j
( i ) )TB̃n1 j21)k5 j

u21cn1k
( i ) and

H5Det(H) with hi j52(vu
( i ))TdYn)k50

u21cn1k
( i ) for j51 and

hi j5wi j for jÞ1. Again, in order to compensate for the ef-
fect of noise in experimental applications, we recalculate at
each timen the value ofpn , even though by solving theu
equations in Eq.~27! simultaneously we can at once obtain
parameter perturbations for the futureu steps.

For the special case where the period-N orbit has one
unstable direction (u51), the control law takes the simple
form

pn5 p̄2S cn
~1!~vn

~1!!T

„~vn11
~1! !TB̃n…

D dYn . ~29!

Evidently, this equation and Eq.~20! are identical for
N51.

We remark that in the above we express the control laws
in terms of the unstable directions of the periodic orbit. This
approach offers several advantages over expressing control
laws using stable directions. First, in the expanded phase
space, one tends to have fewer unstable directions than stable
ones that include the null space. Second, since the estimated
matrix elements ofA andB’s carry inevitable errors, fewer
calculations reduce the chance of severe error propagations
into the control law that, in turn, affect the control perfor-
mance. Third, it is an empirical fact that information about
unstable directions tends to be more reliably estimated from
experimental time series.

III. NUMERICAL RESULTS

A. Formation of time series

In experimental problems, we expect to encounter two
classes of continuous-time systems, autonomous and periodi-
cally driven. We discuss how to form discrete time series in
both cases so that the control laws developed in Sec. II for
discrete maps are directly applicable.

First, consider an autonomous system defined as
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dZ/dt5G~Z,p!,

where ZPRk11. Let x5h(Z) denote a scalar observable
function. Consider the plot ofx versus t. We form the
discrete-time series by measuring the intervalsI n between
the (n21)th andnth upward ~or downward! crossings of
some predetermined thresholdx5xc ~see Fig. 1!. We argue
that these variablesI n , which we call interspike intervals,
sample the dynamics of some Poincare´ map in the original
Z phase space. Specifically, at each crossing in thex versus
t plot, the conditionx5h(Z)5xc is met. This condition de-
fines ak-dimensional Poincare´ surface of section in the origi-
nal Z space. ThusI n is also the time between the (n21)th
and thenth crossings of the section. Suppose we parametrize
this section by ak-dimensional vectorQ. Then, the succes-
sive crossings of the plane from a given direction by a cha-
otic trajectory give rise to a Poincare´ map

Qn115P~Qn ,p!. ~30!

Realizing that the intervalI n is uniquely determined by
Qn21 , namely,

I n5F~Qn21!, ~31!

we complete the analogy between Eqs.~30! and ~1! and the
analogy between Eqs.~31! and ~2!.

Traditionally, one measures the continuous-time seriesx
versust using equally spaced sampling intervals. In the re-
constructed phase space one obtains the Poincare´ map by
examining the crossings of some plane by the reconstructed
trajectory. Due to the discreteness of the trajectory one intro-
duces inevitable errors in the resulting Poincare´ map through
interpolation. In contrast, our way of forming the discrete
time series using interspike intervals avoids this problem by
monitoring the analog signal and thus detecting the threshold
crossing precisely. Furthermore, the reconstructed interspike
intervals already obey a Poincare´ map. In Fig. 1 we also
illustrate the effect of parametric perturbations on the inter-
spike intervals.

Next, we consider a periodically forced system

dZ/dt5G~Z,t,p!,

whereZPRk andG(Z,t1T,p)5G(Z,t,p). Let x5h(Z) be
the scalar observable function. Since by introducingt as an

additional variable one can convert a nonautononmous sys-
tem to an autononmous one, the interspike intervals forma-
tion method also applies here. Another more traditional
method of forming a discrete-time series$xn% is by measur-
ing x at timestn5nT1T0 ~stroboscopic sampling!. From the
theorems of@12#, the dynamics reconstructed from$xn% in a
suitable delay coordinates space represents the dynamics of
the Poincare´ mapZn115P(Zn) in the original phase space,
which, in turn, is equivalent to the continuous-time dynamics
described by the differential equations. Below we give two
examples of controlling continuous-time chaotic systems us-
ing the methods above.

B. Control example 1

Consider the following five-dimensional system of two
coupled driven Duffing oscillators:

ẍ11g ẋ11a~x1
32x1!1b1~x12x2!5p1sin~vt !,

ẍ21g ẋ21a~x2
32x2!1b2~x22x1!5psin~vt !.

~32!

For g50.632, a54.0, b150.1, b250.05, v52.1235,
p151.011, andp5 p̄5p1 , Eq.~32! exhibits a chaotic attrac-
tor of dimensionD53.3. The scalar observable here is
x5x11x2 and we sample the attractor every cycle of the
external forcing. The attractor reconstructed using the time
series $xn% in an (m54)-dimensional delay coordinates
space has a dimensionD52.3. Figure 2~a! shows the attrac-
tor projected down to a two-dimensional space. The high-
dimensional character of this attractor is apparent.

The reconstructed attractor contains a fixed point
(N51) at z( p̄)5(0.54,0.54,0.54,0.54)T with two unstable
directions (u52). This fixed point corresponds to the syn-
chronized period-1 motion of the coupled oscillators. Our
objective is to stabilize this motion. From numerically gen-
erated time series we estimateai andbi used in theA matrix
and the B vectors to be approximatelya(1)523.05,
a(2)522.23, a(3)50.0, a(4)50.016 and b(1)520.90,
b(2)520.089,b(3)50.78, b(4)520.056. The two unstable
eigenvalues arel1521.85 andl2521.20. Applying the
control law in Eq.~17!, we stabilize the fixed point as shown
in Fig. 2~b!, which displays the behavior of the system be-
fore and after the control is turned on.

C. Control example 2

Consider the four-dimensional autonomous chemical re-
action model@13#

ẋ5pw/~11w10!20.1x,

ẏ50.1x20.2yz,
~33!

ż50.2z~y2w!,

ẇ50.2zw20.1w.

For p5 p̄52.5 this system exhibits a chaotic attractor of di-
mensionD52.2. Assume that the observed scalar variable is
x itself. By measuring the times between successive upward
crossings of some thresholdxc by thex versust function we
form the interspike interval time series$I n%. Reconstructing

FIG. 1. Schematic illustrating the formation of interspike inter-
vals from a continuous-time series and the effect of control on the
intervals.
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this discrete time series in an (m53)-dimensional delay co-
ordinate space we obtain an attractor of dimension 1.2. In
this attractor there is a fixed point (N51) at
zn5(48.40,48.40,48.40)T and a period-2 orbit (N52) cy-
cling between z1( p̄)5(47.74,50.13,47.74)T and z2( p̄)
5(50.13,47.74,50.13)T. Both orbits are found to have one
unstable direction (u51).

First, consider the control of the fixed point. Setxc51.
From the numerically generated time series we obtain
a(1)521.33, a(2)50.41, a(3)520.008 andb(1)521.25,
b(2)523.20, b(3)51.95. The unstable eigenvalue is calcu-
lated to bel1521.59. The result of applying Eq.~20! is
shown in Fig. 3, where the system behavior before and after
the control is turned on is displayed. Figure 3~a! is the inter-
spike intervals and Fig. 3~b! gives the corresponding con-
tinuous time series.

Next, consider the control of the period-2 orbit. Set

xc53. From the time series we estimate the elements of the
A matrix and theB vectors atz1( p̄) to be a(1)521.56,
a(2)50.042, a(3)56.031025, and b(1)51.81, b(2)

523.32, b(3)51.61 and at z2( p̄) to be a(1)52.15,
a(2)50.15, a(3)52.931023 and b(1)522.79, b(2)55.85,
b(3)50.17. The control law in Eq.~29! is completely deter-
mined by these values. In Fig. 4 we show the result of con-
trol by displaying the interspike intervals~a! and the corre-
sponding continuous time series~b! for before and after the
control is activated.

FIG. 2. ~a! Two-dimensional (m52) reconstructed image of the
attractor from the coupled Duffing equations, Eq.~32!. High-
dimensional nature of the dynamics is apparent.~b! The result of
applying anm54 implementation of our control method. Here dis-
crete stroboscopic samples are connected with straight lines.

FIG. 3. Results of controlling the unstable period-1 orbit in the
chemical reaction model Eq.~33! using anm53 implementation of
the control.~a! The interspike intervals and~b! the corresponding
continuous-time series.
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IV. EXPERIMENTAL RESULTS

A. Setup

Our experimental system consists of a magnetoelastic
metal ribbon clamped at its lower end. The ribbon changes
its Young’s modulus by more than a factor of 10 in response
to an external magnetic field and buckles under gravity as a
result. This highly nonlinear system is placed vertically
within three mutually orthogonal pairs of Helmholtz coils.
The two horizontal pairs of the Helmholtz coils are used for
counteracting the Earth’s magnetic field while the vertical
pair is used to supply an approximately uniform field along
the ribbon’s length. Inside the Helmholtz coils a photonic

sensor is used to measure the ribbon’s position at a given
point. This sensor is mounted a short distance above the base
of the ribbon. To obtain chaos, we drive the ribbon with a
time-varing magnetic field in the formH(t)5Hdc
1Hacsin(2pft), which is applied along the vertical direction.
For f51.03 Hz, Hac50.961 Oe, andHdc5H̄ dc521.350
Oe the ribbon exhibits chaotic oscillations. We choose
p5Hdc as the control parameter.

Denote the position of the ribbon measured by the photo-
nic sensor every driving period asxn . From visual inspec-
tions of the reconstructed attractor in them52 space and
from some simple estimates it is apparent that the dynamical
behavior near the fixed point, which we wish to stabilize,
cannot be effectively characterized by one stable direction
and one unstable direction. High-dimensional embedding
spaces are needed to unfold the local dynamics in this case.
This observation is further confirmed by our inability to
bring about the desired control using the original Ott-
Grebogi-Yorke~OGY! method @2# ~see below! as well as
using them52 implementation of our control method,
which incorporates the effect of delay coordinates and is
equivalent to the Dressler and Nitsche’s method@6#.

Next we reconstruct the time series in an
(m53)-dimensional space as shown in Fig. 5. On the cha-
otic attractor we identify an unstable periodic orbit of
period-1 by looking for saddle points lying on the diagonal.
From the experimental data this fixed point is determined to
be z̄( p̄)5(6.35, 6.35, 6.35)T. To stabilize the system around
this unstable fixed point, we choosep5Hdc as the control
parameter. When the system state point falls in the vicinity
of the unstable fixed point, a small time-dependent change
was made to this parameter such that the next iterate would
fall onto the stable plane defined by the two stable eigenvec-
tors. The perturbation size is calculated according to Eq.
~20!. To determine the matrix elementsa(1), a(2), anda(3)

for A in Eq. ~10! we consider a close return event by choos-
ing a point in the close vicinity of the fixed point and finding
its preimage and two future iterates. The reason for using the
preimage is to better represent the stable directions and the
reason for using two future iterates instead of just one is to
pick up the negative sign often associated with the unstable
eigenvalue. To guard against the detection of a false

FIG. 4. Results of controlling the unstable period-2 orbit in the
chemical reaction model Eq.~33! using anm53 implementation of
the control.~a! The interspike intervals and~b! the corresponding
continuous-time series.

FIG. 5. Time series from the magnetoelastic ribbon recon-
structed in a three-dimensional (m53) delay coordinate space. The
local dynamics near the fixed point is described by one unstable
(e1) and two stable directions (e2 ande3).
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nearest neighbor in a three-dimensional embedding space we
also monitor the delay coordinate map in them54 and
m55 space. From the true nearest-neighbor points we do a
least-squares fit to determinea(1), a(2), anda(3) to a high
accuracy. Using 20 close return events we find
a(1)521.033 68, a(2)51.7890, anda(3)50.0935, respec-
tively. From the matrix the unstable eigenvalue was calcu-
lated to bel1521.9338. The values ofb(1), b(2), and
b(3) are calculated from the experimental data when a per-
turbationpn is applied at timen immediately after a point in
the map comes into the vicinity of the unstable fixed point.
The perturbation lasts for the full duration of the drive pe-
riod. When the future section data are measured at time
n11, n12, and n13, we calculate the coefficientsb(1),
b(2), andb(3) according to

b~1!5
dxn112a~1!dxn2a~2!dxn212a~3!dxn22

dpn
,

b~2!5
dxn122a~1!dxn112a~2!dxn2a~3!dxn21

dpn
,

b~3!5
dxn132a~1!dxn122a~2!dxn112a~3!dxn

dpn
.

In the experiment we use a constantdpn50.038 Oe every
time for perturbation. For a typical run in this experiment the
values ofb(1), b(2), andb(3) are determined to be 0.001 23
V/Oe, 20.000 118 V/Oe, and20.000 414 V/Oe, respec-
tively.

B. Results

Using them53 implementation of our control method
with the estimateda( i )’s andb( i )’s as stated above, we have
successfully controlled the chaotic oscillations of the ribbon
for almost 200 000 driving cycles~about 54 h! without any
loss of control. Figure 6~a! shows a portion of the experi-
mental time series before and after the application of control.
The control can be maintained indefinitely. Figure 6~b!
shows the perturbations applied to stabilize the period-1 or-
bit. Notice that the size of the perturbations is very small,
typically between60.0054 Oe, or about 0.4% of the nomi-
nal dc fieldp̄5H̄dc. Figure 7~a! shows the contrast between
the original OGY control@2# and our high-dimensional con-
trol with m53 on the same attractor. After 830 iterates the
OGY control is turned on and is unable to hold the periodic
orbit even though there are numerous attempts on the close
returns. The perturbed orbits would come in along the stable
direction, but once the orbit reaches the unstable fixed point
it starts to depart from the vicinity of the fixed point. In
contrast, when our high-dimensional control is activated the
system is captured into the period-1 motion rapidly. We note
that them52 implementation of our method, which has the
delay coordinates effect taken into account, also failed to
achieve proper control. This leads us to believe that for this
attractor one needs a higher-dimensional embedding space to
unfold the dynamics and implement control.

We have also studied another parameter setting where the
local dynamics near the fixed point can be effectively de-
scribed by one stable and one unstable direction. We are able

to control the period-1 orbit in this case with the original
OGY method@2#. However, the interesting point is that, by
applying them53 implementation of our method to the
same orbit, we are able to achieve control with smaller pa-
rameter perturbations compared to the OGY case. This indi-
cates that in some situations, although the low-dimensional
control is effective, a higher-dimensional implementation
may prove to be more efficient. Details of this result are
planned to be presented in a future paper where we consider
all the practical aspects of our control technique.

In applications, an important question is the impact of
noise on the control performance. The unperturbed ribbon
system has about 5% intrinsic noise. Our method is unaf-
fected by this amount of noise. To test the method further,
we have also added parametric noise to the system and found
that we are able to maintain control even in the presence of
about 10% of additional parametric noise, demonstrating the
method’s robustness. We thus believe that the technique pre-
sented in the paper is viable in practical problems where
chaos control in high-dimensions is desired. Again we wish
to present more detailed results on the issue of noise in a
future paper.

V. CONCLUSION

Since Ott, Grebogi, and Yorke published their seminal
paper on the control of chaos@2#, a great deal of experimen-
tal research in nonlinear dynamics has been dedicated to the
exploration of various aspects of the OGY algorithm in a

FIG. 6. Results of stabilizing the unstable period-1 orbit using
anm53 implementation of our control method.~a! Time series and
~b! parameter perturbations. We note that the magnitude ofdpn is
about 0.4% of the nominal value ofp̄, wherep5Hdc is the dc field.
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variety of systems. However, the success of the original
OGY theory is limited by the fact that it applies only to
systems where the dynamics near the periodic orbit is ad-
equately described by one stable and one unstable direction.
In the past few years a number of high-dimensional algo-
rithms have been proposed to address this problem@7–9#.
Due to the difficulties in obtaining the coefficients needed for
control and sensitivity to noise, these methods are found to
be difficult to implement experimentally.

Our main contribution in this paper is the development of
a high-dimensional chaos control method that is effective
and easy to implement in experiments. Based on the use of
time series and delay coordinates, the method requires only
small perturbations of a single control parameter to stabilize
a periodic orbit in an arbitrary dimensional delay coordinate
embedding space with an arbitrary number of unstable direc-
tions. In addition, by considering map-based systems our
method offers the advantage that the coefficients needed for
experimental implementation are easily and reliably esti-
mated from time series data. In this regard, simple methods
are proposed to extract such map-based time series from
continuous-time systems. The effectiveness of the control
method is demonstrated when applied to two examples of
ordinary differential equations and to a physical experiment
of a magnetoelastic ribbon driven by a sinusoidally varying
magnetic field. Robust control is achieved in all cases. Fur-
thermore, we mention that the method is not sensitive to
noise and works well even in the presence of substantial
noise.
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APPENDIX

1. The null space of Ãm21

Using matrix blocks we rewriteÃ defined in Eq.~13! as

Ã5S A B

Z0 SD ,
whereB is anm3(m21) matrix withB( i ) its column vec-
tors,Z0 is an (m21)3m zero matrix, and

S5S 0 1 0 ••• 0

0 0 1 ••• 0

A A A A A

0 0 0 ••• 1

0 0 0 0 0

D
~m21!3~m21!

.

It is easy to verify thatSm21 is a matrix of zeros. This means
that the eigenvalue problemÃm21k50 hasm equations for
2m21 unknowns from which one can findm21 indepen-
dent basis vectors to span the null vectork. In other words,
the null space ofÃm21 is (m21) dimensional.

2. The unstable eigenvectors of A˜T

We wish to show that vi from ÃTvi5l ivi ,
i51,2, . . . ,u, is orthogonal to the stable subspace spanned
by k j , j5u11,u52, . . . ,2m21. Consider j5u11,u
12, . . . ,m. Multiply Eq. ~15! from both sides byk j

T . The
left-hand side becomesk j

TÃTvi5(Ãk j )
Tvi5l jk j

Tvi . Equat-
ing it with the right-hand sidel ik j

Tvi and usingl iÞl j we
havek j

Tvi5vi
Tk j50. Similarly, one can show thatvi

Tk j50,
j5m11,m12, . . . ,2m21, by considering the eigenvalue
problem of Ãm21 instead ofÃ. It is straightforward to see
that if the deviationdYn1u lies entirely in the space ofk j ,
j5u11,u12, . . . ,m,m11,m12, . . . ,2m21, then its fu-
ture evolution asymptotically approaches zero under re-
peated applications ofÃ.

3. The derivation of the control law Eq. „17… from Eq. „16…

Iterating Eq.~12! u times yields

dYn1u5ÃudYn1Ãu21B̃dpn1Ãu22B̃dpn111•••

1B̃dpn1u21 .

From Eq.~16! we get

FIG. 7. Comparison of the OGY control and them53 imple-
mentation of our control method.~a! Time series and~b! parameter
perturbations.
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l1
u21dpn1l1

u22dpn111•••1dpn1u2152S l1
uv1

T

~v1
TB̃!

D dYn ,

l2
u21dpn1l2

u22dpn111•••1dpn1u2152S l2
uv2

T

~v2
TB̃!

D dYn ,

A
lu
u21dpn1lu

u22dpn111•••1dpn1u2152S lu
uvu

T

~vu
TB̃!

D dYn .

Theseu linear equations containu unknowns. Using Cram-
er’s rule we expresspn as

pn5 p̄1
C

D
,

where

C5DetS 2@l1
uv1

T/~v1
TB̃!#dYn l1

u22 l1
u23

••• 1

2@l2
uv2

T/~v2
TB̃!#dYn l2

u22 l2
u23

••• 1

A A A A A

2@lu
uvu

T/~vu
TB̃!#dYn lu

u22 lu
u23

••• 1

D
u3u

~A1!

and

D5 DetS l1
u21 l1

u22 l1
u23

••• 1

l2
u21 l2

u22 l2
u23

••• 1

A A A A A

lu
u21 lu

u22 lu
u23

••• 1

D
u3u

. ~A2!

By recognizing thatD in ~A2! is a slight variant of the stan-
dard Vandermonde determinant@14# we find

D5~21!~d22d!/2 )
1< i, j<u

~l j2l i !.

Expanding the determinant in Eq.~A1! about the first col-
umn, the resulting cofactors are again variants of the Van-
dermonde matrix. This leads us to

C5 (
k51

u

~21!k1~d223d12!/2@lk
uvk

T/~vk
TB̃!#dYn

3 )
1< i, j<u,iÞk, jÞk

~l j2l i !.

After some algebra we obtain Eq.~17!.

@1# E. Ott, Chaos in Dynamical Systems~Cambridge University
Press, Cambridge, 1993!.

@2# E. Ott, C. Grebogi, and J.A. Yorke, Phys. Rev. Lett.64, 1996
~1990!.

@3# W.L. Ditto, S.N. Rauseo, and M.L. Spano, Phys. Rev. Lett.65,
3211 ~1990!; E.R. Hunt,ibid. 67, 1953~1991!; R. Roy, T.W.
Murphy, T.D. Maier, Z. Gills, and E.R. Hunt,ibid 68, 1259
~1992!; A. Garfinkel, M.L. Spano, W.L. Ditto, and J.N. Weiss,
Science257, 1230 ~1992!; V. Petrov, V. Caspar, J. Masere,
and K. Showalter, Nature~London! 361, 240 ~1993!; S.J.
Schiff, K. Jerger, D.H. Duong, T. Chang, M.L. Spano, and
W.L. Ditto, ibid. 370, 615 ~1994!; J.E.S. Socolar, D.W.
Sukow, and D.J. Gauthier, Phys. Rev. E50, 3245 ~2994!; P.
Parmananda, M.A. Rhode, G.A. Johnson, R.W. Rollins, H.D.
Dewald, and A.J. Markworth,ibid. 49, 5007~1994!.

@4# E.A. Jackson and A. Hubler, Physica D44, 407 ~1990!; B.
Peng, V. Petrov, and K. Showalter, J. Phys. Chem.95, 4957
~1991!; T. Tel, J. Phys. A24, L1359~1991!; K. Pyragas, Phys.
Lett. A 170, 421 ~1992!; Y.-C. Lai, M. Ding, and C. Grebogi,
Phys. Rev. E47, 86 ~1993!; M.A. Matias and J. Guemez, Phys.
Rev. Lett.72, 1455~1994!; M. Ding, E. Ott, and C. Grebogi,
Physica D74, 386~1994!; D. Vassiliadis,ibid. 71, 319~1994!;
D.J. Christini and J.J. Collins, Phys. Rev. E~to be published!.

@5# For reviews, see T.A. Shinbrot, C. Grebogi, E. Ott, and J.A.
Yorke, Nature~London! 363, 411 ~1993!; W.L. Ditto and L.
Pecora, Sci. Am.269 ~8!, 78 ~1993!; G. Chen and X. Dong,
Int. J. Bif. Chaos3, 1363 ~1993!; E.R. Hunt and G. Johnson,
IEEE Spectrum30 ~11!, 32 ~1993!; R. Roy, Z. Gills, and K.S.

Thornburg, Opt. Photon. News5 ~5!, 8 ~1994!; E. Ott and M.L.
Spano, Phys. Today48 ~5! 34 ~1995!.

@6# U. Dressler and G. Nitsche, Phys. Rev. Lett.68, 1 ~1992!; G.
Nitsche and U. Dressler, Physica D58, 153 ~1992!.

@7# P. So and E. Ott, Phys. Rev. E51, 2955~1995!.
@8# V. Petrov, E. Mihaliuk, S.K. Scott, and K. Showalter, Phys.

Rev. E51, 3988~1995!.
@9# For a sample of works dealing with chaos control in high di-

mensions, see F.J. Romeiras, C. Grebogi, E. Ott, and W.P.
Dayawansa, Physica D58, 165 ~1992!; D. Auerbach, C. Gre-
bogi, E. Ott, and J.A. Yorke, Phys. Rev. Lett.69, 3479~1992!;
J.A. Sepulchre and A. Babloyantz, Phys. Rev. E48, 945
~1993!; G. Hu and K. He, Phys. Rev. Lett.71, 3794~1993!; C.
Reyl, L. Flepp, R. Badii, and E. Brun, Phys. Rev. E 47, 267
~1993!; P. Colet, R. Roy, and K. Wiesenfeld,ibid. 50, 3453
~1994!; G. Hu and Z. Qu, Phys. Rev. Lett.72, 68 ~1994!; I.B.
Schwartz and I. Triandaf, Phys. Rev. E50, 2548 ~1994!; A.
Namajunas, K. Pyragas, and A. Tamasevicius, Phys. Lett. A
204, 255 ~1995!.

@10# Edward Ott~private communication!.
@11# J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys.57, 617~1985!.
@12# F. Takens, inDynamical Systems and Turbulence, edited by D.

Rand and L.S. Young~Springer-Verlag, Berlin, 1981!, p. 366;
T. Sauer, J.A. Yorke, and M. Casdagli, J. Stat. Phys.65, 579
~1991!.

@13# G. Baier and S. Sahle, J. Chem. Phys.100, 8907~1994!.
@14# R. Bellman, Introduction to Matrix Analysis~McGraw-Hill,

New York, 1970!.

4344 53DING, YANG, IN, DITTO, SPANO, AND GLUCKMAN


