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• Derived exact asymptotic dynamics for time-varying networks of theta neurons.
• Network exhibited macroscopic chaos, quasiperiodicity, and multistability.
• Network exhibited fractal basin boundaries and final-state uncertainty.
• Escape and switching behaviors depend on both macroscopic and microscopic initial states.
• Ability to redirect such macroscopic states with an accessible global parameter.
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a b s t r a c t

Using recently developed analytical techniques, we study the macroscopic dynamics of a large
heterogeneous network of theta neurons in which the neurons’ excitability parameter varies in time. We
demonstrate that such periodic variation can lead to the emergence of macroscopic chaos, multistability,
and final-state uncertainty in the collective behavior of the network. Finite-size network effects and
rudimentary control via an accessible macroscopic network parameter is also investigated.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Natural networks, especially biological ones, are never static.
The strength of interaction between network elements typically
varies in time, often in response to the activity of the elements
themselves. This is especially true of neuronal networks in the
brain, in which, it is generally believed, learning occurs when
synapses are strengthened orweakened in aHebbianmanner. Sim-
ilarly, the internal dynamics of network elements might change in
time as well. For example, the excitability characteristics of neu-
rons can change in response to neuromodulators (e.g., dopamine),
local accumulation of extracellular potassium, or other transient
changes in the neuronal environment.

Developing a general understanding of themacroscopic dynam-
ics of such evolving networks is the subject of a very active area of
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research. Our goal in the present work is to use recently-developed
analytical techniques, applicable to large populations of simple os-
cillators (e.g., Kuramoto systems), to examine the complexity that
can arise in heterogeneous networks of idealized neurons. In par-
ticular, we consider populations of theta neurons in which the
excitability parameters of the neurons vary in time. In previous
work [1], we showed that adding such timemodulation to the cou-
pling in a bimodal Kuramoto system can lead to increased com-
plexity at the macroscopic level.

A neuron at rest begins to spike as a constant injected current
exceeds a threshold. Neurons are typically classified into two types
based on this behavior [2–4]. Type-I neurons begin to spike at an
arbitrarily low rate, whereas Type-II neurons spike at a non-zero
rate as soon as the threshold is exceeded. Neurophysiologically,
excitatory pyramidal neurons are often of Type-I, and fast-spiking
inhibitory interneurons are often of Type-II [5,6].

Ermentrout and Kopell [7,3] showed that, near the firing
threshold, Type-I neurons can be represented by a canonical phase
model that features a saddle–node bifurcation on an invariant
cycle, or a SNIC bifurcation. This model has come to be known as
the theta neuron, and is given by

θ̇ = (1 − cos θ)+ (1 + cos θ)η, (1)
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Fig. 1. The SNIC bifurcation of the theta neuron. (a) For η < 0, the neuron is
excitable. (b) The SNIC bifurcation occurs for η = 0. (c) For η > 0, the neuron
spikes regularly. Spikes occur when the phase variable θ crosses π , by definition.

where θ is a phase variable on the unit circle and η is a bifurcation
parameter related to the injected current. The SNIC bifurcation oc-
curs forη = 0. Forη < 0, the neuron is attracted to a stable equilib-
rium which represents the resting state. An unstable equilibrium
is also present, representing the threshold. If an external stimulus
pushes the neuron’s phase across the unstable equilibrium, θ will
move around the circle and approach the resting equilibrium from
the other side. When θ crosses θ = π , the neuron is said to have
spiked. Thus, for η < 0, the neuron is excitable.

As the parameter η increases, these equilibria merge in a
saddle–node bifurcation and disappear, leaving a limit cycle.
Consequently, the neuron spikes regularly. This transition is
depicted schematically in Fig. 1.

If the theta neuron’s excitability parameterη ismade to oscillate
sinusoidally, repeatedly crossing the SNIC bifurcation, the neuron
becomes a parabolic burster [7], as shown in Fig. 2(a). Several
biophysical mechanisms could modulate neuronal excitability
in this manner. For example, synaptic barrages associated with
characteristic brain rhythms create up and down states in cortical
neurons [8]. Here, we take particular motivation from recent work
in which the role of ion concentration dynamics in neuronal
excitability was investigated [9,10]. In this work, a standard
Hodgkin–Huxley neuron was augmented to permit the intra-
and local extra-cellular concentrations of sodium and potassium
to evolve dynamically. It was found that this extended model
could undergo bifurcations to oscillatory states in which the ion
concentrations vary periodically, driving the neuron into and out
of its spiking regime, thus exhibiting periodic bursting.

It is well-known that the Hodgkin–Huxley neuron is a type-II
neuron with respect to a constant injected current. However, the
augmented Hodgkin–Huxley neuron described above is a Type-I
neuron with respect to the local extracellular potassium. More
precisely, if the ion concentrations are fixed, and the extracellular
potassium concentration is treated as a bifurcation parameter for
the neuron, the neuron transitions from resting to spiking via
a SNIC bifurcation. An example of one such parabolic bursting
behavior exhibited by this model is shown in Fig. 2(b). The
dynamical mechanism underlying this behavior – crossing back
and forth across a SNIC bifurcation – is identical to that of the theta
neuron burster of Fig. 2(a). (See Ref. [9] for details.)

Based on all these considerations, we investigate in this paper
the dynamics of a large heterogeneous network of coupled theta
neurons in which the excitability parameters of the neurons are
modulated in time. We analytically obtain the asymptotic mean
field dynamics of such a network, and show that macroscopic
chaos, multistability, and final-state uncertainty all occur. We also
consider finite-size network effects, and show that these collective
behaviors can be altered and directed by perturbing an accessible
macroscopic parameter. Since the theta neuron is the canonical
representation of Type-I neurons near their spiking thresholds, we
expect that the complex macroscopic behaviors described in this
study are generic features of any large network of Type-I neurons
with time-varying excitability.

2. The model

2.1. Exact macroscopic dynamics of the reduced network

We consider a network of N theta neurons,

θ̇j =

1 − cos θj


+

1 + cos θj

 
ηj(t)+ Isyn


(2)

where j = 1, . . . ,N is the index for the j-th neuron. The neurons
are coupled via a pulse-like synaptic current Isyn by

Isyn =
k
N

N
i

Pn(θi) (3)

where Pn(θ) = an (1 − cos θ)n, n ∈ N [11], and an is a normaliza-
tion constant such that 2π

0
Pn(θ)dθ = 2π.

The parameter n defines the sharpness of the pulse-like synapse;
it becomes more and more sharply peaked as n increases. The sum
in Eq. (3) is over the entire population, and we assume that the
synaptic strength k is the same for all neurons in the network.

Most importantly, we assume that each neuron’s excitability
parameter varies in time. This might occur, for example, via
fluctuating ion concentrations, and in [9], it was found that the
a b

Fig. 2. Parabolic bursters. (a) Time trace of a voltage-like variable V (t) = sin(θ) for a theta neuron with a time-varying excitability parameter η(t) = η̄ + A sin(2π t/τ).
The lower panel shows η versus time. (b) Voltage trace for the ion-concentration burster described in the text. The lower panel shows the local extracellular potassium
concentration.
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ion concentration dynamics typically settles onto a limit cycle. This
observation, along with Ref. [7], motivated us to write

ηj(t) = η̄j + A sin(2π(t + δ0)/τ), (4)

where η̄j is the temporal mean of the excitability for the j-th neu-
ron. A and τ are the same for all neurons and denote the magni-
tude and the period of the modulation, respectively, and we set
δ0 = 0 unless we specify otherwise. We note that the reduction
performed in the following section remains valid even if one re-
places ηj as given in Eq. (4) by the solution of a differential equation
of the form η̇j = Π(ηj, z, t), where the functionΠ depends on ηj,
a macroscopic mean field variable z (defined below), and time t .

In addition, since neurons in real biological networks exhibit a
range of intrinsic excitabilities, we also assume that the median
excitability η̄j of each neuron is different. We model this network
heterogeneity by assuming that each η̄j is randomly drawn from a
distribution g(η̄). In the following analysis,we assumea Lorentzian
distribution,

g(η̄) =
1
π

∆

(η̄ − η0)2 +∆2
, (5)

where η0 is the center of the distribution, and ∆, the half-width
at half-maximum, describes the degree of heterogeneity in the
population.

Following the mean-field approach pioneered by Kuramoto
in 1975 [12] (and later used by many others [13]), we consider
the limit N → ∞ and move to a continuum description by in-
troducing a probability density function ρ(θ, η̄, t) that describes
the distribution of neuronal oscillators. Specifically, the quantity
ρ(θ, η̄, t)dθdη̄ gives the fraction of neurons with phase in the
range [θ, θ+dθ ] andmedian excitability in [η̄, η̄+dη̄] at a particu-
lar time. Since the total number of neurons is conserved, ρ satisfies
the following continuity equation:

∂ρ

∂t
+
∂

∂θ
(ρvθ ) = 0 (6)

where the phase velocity vθ is given by the continuum version of
Eqs. (2) and (3),

vθ (θ, η̄, t) = (1 − cos θ)+ (1 + cos θ)

×


η(t)+ kan


∞

−∞

 2π

0
ρ(θ ′, η̄′, t)(1 − cos θ ′)ndθ ′dη̄′


. (7)

Here, η(t) = η̄ + A sin (2π t/τ).
The collective behavior of the infinite network can be described

by a complex macroscopic mean-field variable z(t) given by

z(t) =


∞

−∞

 2π

0
ρ(θ, η̄, t)eiθ dθdη̄. (8)

If one imagines the state of each individual neuron being
represented by a phasor on the unit circle, the macroscopic mean
field z(t) gives the centroid of these phasors. Writing z(t) = reiφ ,
the magnitude r characterizes the degree of network coherence,
andφ is themean-field phase. Below,we derive a low-dimensional
dynamical system whose asymptotic behavior exactly coincides
with that of the infinite discrete network.

Our theta neuron network, Eqs. (2)–(3), can be written
in sinusoidally coupled form [14], meaning that the individual
oscillator’s phase θ only appears via the harmonic functions eiθ and
e−iθ :

vθ = feiθ + h + f ∗e−iθ (9)

where ∗ denotes complex conjugation,

f = −
1
2
[(1 − η(t))− kH(z, n)] , (10)
and

h = (1 + η(t)+ kH(z, n)). (11)

Here, the rescaled synaptic current H(z, n) = Isyn/k is written as
a function of the mean-field variable z and the synapse sharpness
parameter n, and is given by,

H(z, n) = an


C0 +

n
q=1

Cq

zq +


z∗
q (12)

with

Cq =

n
j,m=0

δj−2m,qQjm (13)

and

Qjm =
(−1)jn!

2jm!(n − j)!(j − m)!
, (14)

where δi,j is the standard Kronecker delta function on the indices
(i, j). Further details are provided in Appendix A.

The sinusoidally coupled form of Eq. (9) defines a general
class of globally-coupled phase oscillator networks which includes
Josephson junction arrays and other Kuramoto-like systems.
Stemming from its globally coupled nature, the functions f and h
in general depend on themean field z. While they cannot explicitly
depend on the phase variable θ , they can be any sufficiently well-
behaved functions with or without explicit dependence on time
or other auxiliary dynamics. Here, we exploit this property by
coupling the theta neuron network to the time-varying excitability
parameter η that appears in f and h.

From the initial theoretical work by Watanabe and Strogatz on
networks of identical Josephson junction arrays in the 1990s [15],
to the recent resurgence of interest in other Kuramoto-like
networks [16–20], developments in the analysis of collective
dynamics of phase oscillator networks have produced a powerful
set of new theoretical tools. These tools apply to our theta neuron
network as well. Here, we follow the procedure of Ref. [16] and
adopt the ansatz that the solution to the continuity equation,
Eq. (6), can be written as a Fourier series

ρ(θ, η̄, t) =
g(η̄)
2π


1 +

∞
q=1

(α∗(η̄, t)qeiqθ + α(η̄, t)qe−iqθ )


(15)

in which α(η̄, t) is a yet-to-be-determined complex function. In
Eq. (15), the amplitudes in the Fourier expansion are monomials
in α. This defines a two-dimensional subspace (parametrized by
the real and imaginary parts of α) within the infinite-dimensional
space of all possible probability density functions. In [16], Ott and
Antonsen showed that thismanifold (often called theOAor Poisson
manifold) is attracting and invariant for themacroscopic dynamics
if and only if α satisfies the differential equation

α̇ = i(f α2
+ hα + f ∗) (16)

and |α(η̄, t)| < 1 for all time.
The macroscopic mean field is obtained by substituting Eq. (15)

into Eq. (8), resulting in

z(t) =


∞

−∞

α(η̄, t)g(η̄)dη̄. (17)

To evaluate this integral, α(η̄, t) is analytically continued into the
upper half of the complex η̄-plane. With the Lorentzian in Eq. (5),
the resulting contour integral can be evaluated in closed form in
terms of the residue at η̄ = η0 + i∆. Thus, z(t) = α(η0 + i∆, t).
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Fig. 3. Macroscopic equilibrium states in the frozen network (A = 0). Open circles
and blue lines show the attracting equilibria for themacroscopicmean field variable
z, obtained using the reduced system, Eq. (18). The red dots show snapshots of the
distribution of phases for a finite discrete network of 10,000 oscillators, with darker
regions denoting higher density. (a) The partially synchronous rest state (PSR) with
η0 = −0.2, k = −0.8. (b) The partially synchronous spiking state (PSS) with
η0 = 0.2, k = 2.0. ∆ = 0.1 in both cases. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Finally, by substituting f (Eq. (10)) and h (Eq. (11)) into Eqs. (16)
and (17) and evaluating at the residue, we obtain

ż = −i
(z − 1)2

2
+
(z + 1)2

2
[−∆+ iη0(t)+ ikH(z, n)] , (18)

where the excitability function η0(t) = η0 + A sin(2π t/τ) varies
about the fixed median value η0 in time and the synaptic function
H(z, n) is given by Eqs. (12)–(14). The asymptotic dynamics of
Eq. (18) coincides with that of the infinite discrete theta neuron
network in Eqs. (2) and (3) [16].

2.2. Macroscopic states of the frozen system

Luke et al. [20] studied the macroscopic dynamics of a ‘‘frozen’’
version of our network, in which the excitability parameters ηj
are fixed (i.e., A = 0 in Eq. (4)). They found three fundamental
macroscopic states for this case: a partially synchronous rest state
(PSR), a partially synchronous spiking state (PSS), and a collective
periodic wave state (CPW). Transitions between these states were
examined as the parameters η0, k, and ∆ were varied. Luke
et al. [20] also found that the qualitative features of their result do
not depend strongly on the choice of the sharpness parameter n.
Thus, we have fixed n = 2 for all of our numerical examples below.

In the PSR state, themacroscopic mean field z approaches a sta-
ble equilibrium (a node) asymptotically [21]. This state is predomi-
nantly observedwhen the distribution of excitability parameters is
such thatmost neurons are in the resting regime (η0+∆ < 0), and
the neurons are coupled through inhibitory synapses (k < 0). This
macroscopic state calculated using the reduced system, Eq. (18),
is marked with an open circle in Fig. 3(a). In a large but finite
discrete realization of such a network, most neurons remain qui-
escent, but those neurons with sufficiently large excitability pa-
rameter η̄j > 0 spike regularly. A depiction of the microscopic
distribution of phases for a finite network (N = 10,000) at the
same parameters is also shown in Fig. 3(a) with red dots, where
the shade of red denotes the density of oscillators.

The macroscopic mean field attractor for the PSS state is also a
stable equilibrium (a focus). This state typically occurs when most
neurons inherently spike (η0 − ∆ > 0), and the neurons are cou-
pled through excitatory synapses (k > 0). In a finite realization,
the majority of neurons spike regularly, but the collective circula-
tion is organized such that the mean field remains fixed. This state
is illustrated in Fig. 3(b).

Themacroscopic andmicroscopic behavior exhibited by the PSS
and the PSR states described above are analogous to the (somewhat
confusingly named) asynchronous state previously studied in [22].
An interesting case occurs whenmost neurons inherently spike
(η0 −∆ > 0), but are coupled though inhibitory synapses (k < 0).
In this case, there is dynamic competition between the neurons’
inherent activity and their inhibitory interaction. In these circum-
stances, the CPW state can occur: the network exhibits partial co-
herence that waxes and wanes periodically in time [23] such that
the mean field is attracted to a limit cycle. An example of the
macroscopic limit cycle is shown in Fig. 4(a), and panels b and c
show snapshots of the distribution of phases for the correspond-
ing microstates at different times. One can clearly see the network
coherence change as the macroscopic mean field goes around the
limit cycle periodically.

Based on a comprehensive bifurcation analysis, Luke et al. [20]
conclude that no other macroscopic states beyond the three
identified above (PSR, PSS, and CPW) are possible in the frozen
network. However, more complicated macroscopic behavior is
possible if the neuronal excitability parameters vary in time. In the
following, we use the mean field equation derived in the previous
section (Eq. (18)) to demonstrate the emergence of macroscopic
aperiodicity and multistability in our time-dependent network.

3. Results

3.1. Emergence of macroscopic quasiperiodicity and chaos

Our initial results parallel a similar study [1] in which periodic
modulation was introduced into the coupling parameter in a
Kuramoto system with a bimodal natural frequency distribution.
If the amplitude A of the modulation is small, then in both cases
the equilibria of the frozen system (which in our theta neuron
network are the PSR and PSS states) become periodic orbits in the
time-dependent system. For moderately slow driving, these orbits
(which we call librations) have the same period τ as the drive η(t).
In essence, the system simply follows along as the periodic drive
moves the previously frozen equilibrium back and forth.

Similarly, limit cycles of the frozen system, which occur for our
network’s CPW state, typically become quasiperiodic attractors on
a torus in the time-dependent system (again, for small A). This
is shown in Fig. 5(a), in which a plot of the quasiperiodic state
calculated using Eq. (18) is shown. For comparison, Fig. 5(b) shows
themean field behavior of a large discrete network realizationwith
10,000 theta neurons, after a sufficiently long transient has been
discarded. One can see that the prediction from the reduced mean
field equation is quite good. A snapshot showing the microstate at
a particular time is shown in Fig. 5(c).

As the amplitude A of the periodic modulation is increased, fre-
quency locking between the macroscopic mean field and the pe-
riodic drive η(t) is observed. Higher-order periodic orbits emerge
from quasiperiodic behavior in a manner similar to that seen in
the periodically-driven circle map [24]. However, in our case, fre-
quency locking comes about from the interplay between the pe-
riodic drive and the collective rhythm that arises in the network.
This can be seen in the bifurcation diagram of Fig. 6. To create this
figure, many values of the amplitude A (on the horizontal axis)
were selected. For each such value, several asymptotic trajecto-
ries of the macroscopic mean field z were obtained using Eq. (18).
These trajectories were then stroboscopically sampled at period τ ,
and the real part of the resulting data was plotted. Since quasiperi-
odic trajectories are space-filling, this process produced the dark
bands visible on the left of the figure. Among these bands, two large
windows near A = 0.38 and 0.9 can be seen in which the data
falls on a discrete number of lines, thus indicating periodic orbits.
The smaller window is magnified in the inset. There are an infinite
number of such periodic windows within the quasiperiodic bands,
but most are too thin to be observed at this magnification.
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Fig. 4. The collective periodic wave (CPW) state in the frozen network. (a) The attracting limit cycle for the macroscopic mean field z with η0 = 10.75, k = −9.0, and
∆ = 0.5. On this scale, there is no visible difference between the limit cycle obtained with Eq. (18) and that calculated with a discrete network of 10,000 neurons. The
labeled dots on the limit cycle correspond to the snapshots shown in (b) and (c), taken at different times. The red dots show snapshots of the distribution of phases in the
discrete network at the same parameters, with darker regions denoting higher density. The blue lines indicate the instantaneous macroscopic mean field variable z. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
a b c

Fig. 5. The macroscopic quasiperiodic state. (a) The predicted attractor, obtained using Eq. (18) with η0 = 10.75, k = −9, ∆ = 0.5, A = 0.7625, and τ = 1. (b) The
asymptotic trajectory of the macroscopic mean field, obtained using a network of 10,000 theta neurons and the same parameters. (c) A snapshot showing the instantaneous
macroscopicmean field (blue line) of the discrete network at a particular time. In addition, the red dots show the corresponding distribution of phases in the discrete network,
with darker regions denoting higher density. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Bifurcation diagram showing the asymptotic behavior of the macroscopic
mean field, obtained using Eq. (18), versus the amplitude A of the excitability
modulation (defined in Eq. (4)). The macroscopic mean field z was sampled
stroboscopically with period τ before x = Re(z) was plotted, and many initial
conditions were used for each value of A in order to identify coexisting attractors.
Other parameters were η0 = 10.75, k = −9, ∆ = 0.5, and τ = 1. The structure
with dark bands on the left reflects quasiperiodic behavior. Periodic orbits appear
as sets of lines. The inset is a magnification showing the thin periodic window near
A = 0.38. The three coexisting periodic orbits within this window are color coded
according to the color schemeused in Fig. 11. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

The trajectories that were used in the construction of Fig. 6
were calculated using many different initial conditions in order
to reveal the presence of coexisting attractors. (Note that we did
not necessarily find all the attractors.) For example, two periodic
orbits that coexist with the quasiperiodic bands are clearly visible.
A prominent one is near x = −0.75. This corresponds to a small
libration and has period τ ; hence it appears in the figure as a single
line. Another coexisting periodic orbit is visible near x = −0.33.
This orbit is plotted in red in the inset, and appears as two lines,
revealing that it is a period-2τ orbit. (The period of a periodic orbit
is defined by the smallest T > 0 such that z(t) = z(t + T ); we call
an orbit period-mτ if T = mτ .)

Restricting attention to the periodic window that is magnified
in the inset, we see that three periodic orbits coexist here: the
period-τ (blue) and period-2τ (red) orbit mentioned above, and a
period-7τ orbit that is plotted in green. (Fig. 11 shows a state-space
representation of the three coexisting orbits at A = 0.38 using the
same color scheme.)

Sequences of bifurcations near the period-2τ orbit appear near
A = 0.5. These, along with other bifurcation cascades that are
difficult to resolve, lead to the creation of a chaotic saddle which
eventually becomes attracting. This can be seen in Fig. 7, which
is a continuation of Fig. 6 to higher values of the amplitude A.
(The lower panel shows the two largest Lyapunov exponents,
confirming the presence of chaos.) The first attracting chaotic band
appears at a crisis when the chaotic saddle and an unstable period-
τ orbit collide near A = 4.525. Note that there is a small region
in which the libration (a stable period-τ orbit) coexists with the
stable chaotic band. For higher values of A, multiple chaotic bands
delineated by period doubling cascades on the right and crises on
the left can be seen. Also visible near A = 5.65 is a smaller cascade
from a period-6τ orbit that coexists with the main branch. Many
such regions of multistability are present, and their dynamical
implications for the full network will be examined in more detail
in the next section.
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Fig. 7. (Top) A continuation of Fig. 6 to higher values of A, showing the emergence
ofmacroscopic chaos. (Bottom) The corresponding two largest Lyapunov exponents
of the most dominant attractors seen in the top panel.

A phase portrait of the chaotic attractor for A = 4.8 calculated
using the reduced system, Eq. (18), is shown in Fig. 8(a), and the
corresponding mean field behavior for the finite network (N =

10,000) is shown in panel b. Panel c shows a snapshot of the
microstate. The trajectory from the reduced mean field equation
traces out an attractor which matches very well with the one
calculated directly from the full discrete network. We emphasize
that chaotic attractors for the macroscopic mean field were only
observed in parameter space regions in which there is competition
between the intrinsic spiking behavior of the neurons (η0 > 0) and
inhibitory synaptic coupling (k < 0).

A similar sequence of bifurcations into and out of quasiperiod-
icity and chaos can be seen if one varies the period τ of the time-
varying network excitability η(t). This is shown in Fig. 9, which
was obtained with A = 4.8 and the remaining parameters fixed as
above. The three panels show several of the network’s attractors
for fast, moderate, and slow modulation of η0(t) (i.e., increasing
periods τ ). Panels (a) and (b) were constructed in the same man-
ner as Figs. 6 and 7. That is, the asymptotic values of x = Re(z)were
obtained using Eq. (18) with many different initial conditions, and
the resulting attractors were sampled stroboscopically at period τ .

For fast modulation (Fig. 9(a)), the macroscopic mean field
exhibits quasiperiodic behavior similar to that described above
with small amplitude modulation (see Fig. 6). For moderate
modulation (Fig. 9(b)), a more dynamically rich regime is found.
As before, there is a region (τ approximately in [0.4, 0.9]) in which
many bifurcation cascades are found (some ofwhich are difficult to
resolve), after which attracting chaotic bands occur that are again
bracketed by crises and period-doubling cascades.
a

b

c

Fig. 9. Bifurcation diagrams showing the asymptotic behavior of the macroscopic
mean field, obtained using Eq. (18), versus the period τ of the excitability
modulation (defined in Eq. (4)). Many initial conditions were used in order to
identify coexisting attractors. The panels show ranges of (a) fast, (b) moderate,
and (c) slow modulation. In panels (a) and (b), the macroscopic mean field z was
sampled stroboscopically with period τ before x = Re(z) was plotted. In panel (c),
z was sampled using a Poincaré surface of section at y = Im(z) = −0.3 before
x = Re(z) was plotted. This was done in order to show that the winding number
of the attractor increases in a sequence of period-adding bifurcations. Other system
parameters for all three graphs were η0 = 10.75, k = −9,∆ = 0.5, and A = 4.8.

Finally, for very slow modulation (τ > 1.2), no more chaos is
found. However, as τ is increased further, a sequence of period-
adding bifurcations [25] occurs, as shown in Fig. 9(c). In this region,
a period-τ orbit increases its winding number by one at each such
bifurcation. To reflect this, the bifurcation diagram in this panel
was obtained using a Poincaré surface of section at y = −0.3, in-
stead of the stroboscopic map used in previous diagrams. We de-
note a period-mτ orbit with winding number w as period-mτw .
Fig. 10 shows the phase portrait of the period-τ9 orbit at τ = 25.
The bifurcation diagram (Fig. 9(c)) shows that this period-τ9 or-
bit emerges from a period-τ1 orbit by acquiring an additional twist
each time τ increases through the following sequence of bifurca-
tion points: τ = 5.5, 8.7, 11.5, 14.2, 16.8, 19.3, 21.7, and 24.2.

To conclude this section, we note that naively, one might
typically expect two default behaviors to be present in the mean
field dynamics for a large heterogeneous network of neuronal
oscillators. At one extreme, with little or no coupling, one
might expect the neurons to behave incoherently, so that the
macroscopic mean field in some sense ‘‘averages out’’. At the other
extreme, one might expect that sufficiently strong coupling would
lead to network synchrony. We have demonstrated in this section
that the actual situation, even in the frozen case, is more nuanced.
a b c

Fig. 8. (a) A predicted chaotic attractor, obtained using the reduced mean field equation (Eq. (18)) with η0 = 10.75, k = −9, ∆ = 0.5, A = 4.8, and τ = 1. (b) The
asymptotic trajectory of the macroscopic mean field, obtained using a discrete network of 10,000 neurons at the same parameters. (c) A snapshot showing the microstate at
a particular time. The blue line indicates the instantaneousmacroscopic mean field variable z, and the red dots show the distribution of phases, with darker regions denoting
higher density. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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a b c

Fig. 10. The period-τ9 orbit with winding number 9 created by the sequence of period-adding bifurcations shown in Fig. 9(c). (a) The predicted orbit obtained using the
reduced mean field equation (Eq. (18)) with η0 = 10.75, k = −9, ∆ = 0.5, A = 4.8, and τ = 25. (b) The asymptotic trajectory of the macroscopic mean field, obtained
using a discrete network of 10,000 neurons at the same parameters. (c) A snapshot showing the microstate at a particular time. The blue line indicates the instantaneous
macroscopic mean field variable z, and the red dots show the distribution of phases, with darker regions denoting higher density. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Furthermore, a richer set of dynamical states are possible when
one introduces temporal variation into the neuronal excitability
parameters. Quasiperiodic and even chaotic behavior are possible
in the collective behavior of such networks.

3.2. Multistability and final state uncertainty

The bifurcation diagrams presented in the previous section
demonstrate that multistability is easy to find in the macroscopic
dynamics of our network. There are parameter ranges in which
periodic orbits coexist with different periodic orbits, quasiperiodic
orbits coexistwith periodic orbits, and chaos coexistswith periodic
orbits. We used the macroscopic mean field equation (Eq. (18)),
which we derived using the OA reduction method (Section 2.1),
to identify these attractors. As described above, the asymptotic
behavior of Eq. (18) coincides with the asymptotic behavior of the
large discrete network defined by Eqs. (2)–(5).

It is important to note, however, that the transient behavior
of Eq. (18) does not correspond to the transient behavior of the
discrete network. Consequently, the reduced equation cannot be
used to calculate basins of attraction for the discrete network. In
general, the transient behavior of the macroscopic mean field z,
and the identity of which attractor is ultimately reached, depends
on the network’smicroscopic initial conditions [19]. We show here
that for our discrete network (Eqs. (2)–(5)), the boundary between
different basins of attraction in multistable regions can be fractal,
and consequently, themacroscopicmean field z exhibits final state
sensitivity [26].

We focus on the following parameters, for which the network
possesses three coexisting attractors: η0 = 10.75, k = −9, ∆ =

0.5, A = 0.38, and τ = 1. These attractors are shown in Fig. 11. The
innermost attractor, in green, is a period-7τ orbit. Encircling this is
a large period-2τ orbit shown in red. The third attractor, in blue
and near (x = −0.75, y = −0.62), is the small period-τ libration
mentioned above. All three of these are visible in the inset of the
stroboscopic bifurcation diagram of Fig. 6.

Initial conditions for the discrete network can be specified by
a complete set of initial phase angles


θj(t = 0)

N
j=1. But rather

than having to specify N phases individually, it has been shown
that for systems such as ours, it is sufficient to specify the initial
values of just three quantities, known as the Watanabe–Strogatz
(WS) variables [15]. See Appendix B for details. On theOAmanifold,
the first two WS variables are related to the real and imaginary
parts of the macroscopic mean field z = x + iy. The remaining
WS variable,Φ , is an additional degree of freedom that essentially
describes the spread of the oscillator phases with respect to the
mean phase of the population. Since our network also includes
the time-dependent excitability modulation defined in Eq. (4),
Fig. 11. Three coexisting periodic orbits predicted from the reduced mean field
equation, Eq. (18), with η0 = 10.75, k = −9, ∆ = 0.5, A = 0.38, and τ = 1. The
period m of an orbit is determined by the condition z(t) = z(t + mτ). The inner
orbit (green) is a period-7τ orbit. The large outer orbit (red) has period 2τ . The third
attractor is the small period-τ libration near the lower left corner (blue). In the x–y
macroscopic state space, the period-2τ orbit appears as a single loop since it takes
the trajectory 2τ time units to come back onto itself. Similarly, the period-7τ orbit
takes 7τ time units to complete four cycles around the origin. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

the initial phase shift δ0 must also be specified. Thus, we have a
four-dimensional space (x0, y0, δ0,Φ0) of initial conditions for our
discrete N-neuron network.

In order to visualize this space, we take a two-dimensional slice
at x0 = 0.45 and y0 = −0.3, and select a point on the resulting
δ0–Φ0 plane. Then, we integrate the discrete network with 10,000
neurons using Eqs. (2)–(5). Transients are discarded, and the pixel
at the selected point (δ0,Φ0) is colored according to the color
scheme of Fig. 11 to label which attractor is attained. If this cannot
be determined in a reasonable time, or if the trajectory settles on
an attractor different from the three identified above, the point is
plotted without color. This process is then repeated to fill out an
interesting region of the δ0–Φ0 plane.

The result is shown in Fig. 12(a) and (b). One can clearly identify
large solid-color basins for each attractor, and the boundaries
appear to be fractal. (Indeterminate points only occur in the
lower part of panel a.) Fig. 12(b) is a magnification of the area
marked by the small rectangle in Fig. 12(a). The fractal structure
of the basin boundary [26] can be seen, including the possible
intermingling of the three basins, despite the fuzziness due to the
finite size of the network [27]. We conjecture that the boundary
becomes a mathematically true fractal (which may have theWada
property [28]) as N → ∞.
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a b

Fig. 12. Basins of attraction for the attractors shown in Fig. 11, obtained using a discrete network of 10,000 neurons. Panel (b) is a magnification of the region marked by
the black rectangle in panel (a). Initial conditions for the discrete network consist of a point (δ0 ,Φ) on this graph, with x0 = 0.45 and y0 = −0.3.
a

b

Fig. 13. (a) A trajectory (black) of the macroscopic mean field obtained using a
small network of 2000 neurons illustrating fluctuation-induced escape. Parameters
are as in Fig. 11. The red limit cycle is the predicted period-2τ attractor obtained
from the reduced mean field equation (Eq. (18)). The black trajectory follows the
predicted trajectory for approximately 500 time units before it escapes to the small
period-τ libration in the lower left corner. The innermost period-7τ orbit is also
shown in green in this figure. (b) A plot of the real part x of the macroscopic mean
field versus time. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

We conclude this section by emphasizing that the fractal nature
of the basin boundaries is a feature of the discrete network. The
reducedmean field equation can be used to identify the asymptotic
macroscopic attractors of the network, but the transient behavior
and basin structure of the network is determined by the discrete
network dynamics only upon full specification of the initial
microscopic state.

3.3. Macroscopic switching and intermittency

The fuzziness of Fig. 12(b) suggests that fluctuations due to
the finite nature of a discrete network play an important role in
determining the asymptotic behavior of the macroscopic mean
field z. Since such fluctuations scale as 1/

√
N , we expect that

smaller networks would be more affected.
For multistable systems, one consequence is that asymptotic

stability is compromised. As the size of a discrete network
decreases, the probability of a fluctuation ‘‘kicking’’ a trajectory
from near one attractor into the basin of a different attractor
increases. To illustrate this, we used a small network with only
a

b

Fig. 14. (a) A trajectory (black) of the macroscopic mean field obtained using
a small network of 2000 neurons illustrating fluctuation-induced intermittency.
Parameters are as in Fig. 11. The trajectory switches between the inner period-7τ
attractor (green) and the outer period-2τ attractor (red) due to finite network-size
fluctuations. (b) A plot of the real part x of the macroscopic mean field versus time
showing the intermittent switching behavior. The time intervals in which the black
trajectory visits each attractor are labeled by the colored bars on the bottom of the
graph. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

2000 neurons andwith the sameparameters as in Fig. 11.We chose
an initial condition near the boundary between the red and blue
basins of Fig. 12, specifically, x0 = 0.45, y0 = −0.30, δ0 = 0.165,
and Φ0/2π = 0.32. Fig. 13 shows the evolution of the real part
of the macroscopic mean field from this initial condition. Initially,
the trajectory is attracted to the large orbit shown in red. The
noisiness of this trajectory is likely enhanced due to the presence of
several nearby unstable periodic orbits. After spending a long time
there, a fluctuation by chance kicks the trajectory into the basin
of the period-τ libration when it happens to visit a saddle-like
structure [29] labeled by the open red triangle. The trajectory then
escapes to the libration, which is smaller. This attractor is more
isolated with fewer unstable periodic orbits nearby as compared
to the central region of state space, and hence the subsequent
trajectory is less noisy.

If instead we choose the initial condition to be near the
boundary between the red and the green regions of Fig. 12 at
x0 = 0.45, y0 = −0.30, δ0 = 0.50,Φ0/2π = 0.565, we observe
intermittent switching between the two large periodic orbits. This
is shown in Fig. 14. This intermittent behavior introduces a low-
frequency alternation in the temporal signal of the macroscopic
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Fig. 15. A trajectory (black) of the macroscopic mean field obtained using a network of 10,000 neurons illustrating a perturbation-induced switch. Parameters are as in
Fig. 11. The lower panel (a) shows a plot of the real part x of the macroscopic mean field versus time. A perturbation is applied to the phase of the excitability modulation at
t = 250 time units (red arrow), causing the switch. The upper panels show the state-space trajectories of the data in the intervals marked with the gray bars. The attractors
of Fig. 11 are superimposed for reference. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
dynamics that is not intrinsic to the natural time scales of the
individual neurons. Similar emergent low-frequency behavior
was recently reported in networks of inhibitory hippocampal
neurons [30].

An interesting difference between this macroscopic intermit-
tent behavior and the previously-described escape behavior is that
in the intermittent situation, both macroscopic ‘‘attractors’’ be-
come non-attracting in the smaller network, while in the escape
example, the small libration remains locally attracting even for the
small network.

Finally, we show that it is possible to deliberately effect a switch
between coexisting attractors of the macroscopic mean field in
larger networks by applying a small, short perturbation. This is
shown using the larger network of 10,000 neurons, with the same
parameters as before, in Fig. 15. A trajectory that is initially near
the period-7τ attractor is shown. At time t = 250 (arbitrary units),
the phase of the sinusoidal modulation in η is shifted abruptly by
0.2π . This causes the macroscopic mean field trajectory to shift,
after an oscillating transient, to the larger period-2τ attractor.
Subsequently, the trajectory remains there indefinitely.

4. Conclusion

We constructed a large heterogeneous network of coupled
theta neurons that interact globally via pulse-like synapses and
whose excitability parameter varies sinusoidally in time. This
idealization allowed us to apply recently-developed analytical
techniques to identify the asymptotic behavior of the macroscopic
mean field dynamics of the network.We showed that macroscopic
chaos, quasiperiodicity, multistability, and final-state uncertainty
are all exhibited by this non-autonomous network.

The assumption of global coupling is necessary for the
derivation of Eq. (18). Of course, this assumption does not apply
to many real-world networks of interest. Nevertheless, we believe
that the insights gleaned from our approach are useful in that
they identify dynamical states and behavior that one might begin
to investigate in imperfectly-coupled networks. For example, we
have found that the reduced system gives a reasonably accurate
description of the full discrete network’s behavior even if 10%–15%
of the links are randomly removed (this claim will be made more
precise in [31]). Similarly, the assumption of constant synaptic
strength k is at best a rough approximation when describing real
biological networks. Our reduction method, however, does not
preclude the analysis of a network in which the synaptic strengths
are given by a distribution of values.We are currently investigating
such systems.

Our work demonstrates the utility and the limitations of
the reduced mean-field equation, Eq. (18). This can be used
to identify attractors of the macroscopic mean field z, and to
identify parameter space regions in which attractors coexist.
However, understanding the transient behavior of the full discrete
network, including the structure of attractor basins, requires
detailed specification of the full networkmicrostates. Furthermore,
fluctuations due to the finite number of neurons in a real or
simulated network must be considered. For smaller networks,
these fluctuations play an important role in the mean field
dynamics. Finally, we demonstrated that simple control of the
macroscopic behavior of networkswith a small global perturbation
is possible. A more detailed and expanded study of the former will
be presented in another publication [31].

Appendix A. Derivation of the rescaled synaptic function
H(z, n)

Applying the binomial theorem twice, the sharpness factor (1−

cos θ)n in our synaptic function can be written as a double sum,

(1 − cos θ)n =

n
j=0

j
m=0

Qjmei(j−2m)θ , (A.1)

where

Qjm =
(−1)jn!

2jm!(n − j)!(j − m)!
. (A.2)

In the continuum limit (N → ∞), one can define a set of Daido
moments zq [32] with q ∈ Z to characterize the macroscopic mean
field of the network,

zq(t) =


∞

−∞

 2π

0
ρ(θ, η̄, t)eiqθdθdη̄, (A.3)
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and the rescaled synaptic current can then be written in terms of
these Daido moments,

H =
Isyn
k

= an


∞

−∞

 2π

0
ρ(θ, η̄, t)(1 − cos θ)n

= an
n

l=0

j
m=0

Qjm


∞

−∞

 2π

0
ρ(θ, η̄, t)ei(j−2m)θ



= an
n

j=0

j
m=0

Qjmzj−2m. (A.4)

Now, the double sum on zl−2m can be expanded and regrouped into
a single sum on (zq + z−q)with q = 0, . . . , n,

H(zq, n) = an


C0 +

n
q=1

Cq

zq + z−q


, (A.5)

where

Cq =

n
j,m=0

δj−2m,qQjm,

and z0 = 1 since ρ is assumed to be normalized. Note that H(zq, n)
in the above equation depends on all statistical moments zq of the
macroscopic mean field with all q from −n to n. In the following,
we will show that the qth statistical moment simply equals the
qth power of the first moment, i.e., zq(t) = zq(t) [q ≥ 0] and
zq(t) = (z∗)|q| [q < 0], if the network excitability distribution
function g(η̄) is given by the Lorentzian distribution. In this spe-
cial case, H(z, n) can be further reduced to a function depending
on the first moment z ≡ z1 of the macroscopic mean field only.

For a heterogeneous network such as ours, the general Daido
moment zq can be explicitly evaluated by directly substituting
ρ(θ, η̄, t), as given by the OA ansatz in Eq. (15), into its definition,

zq(t) =


∞

−∞

 2π

0

g(η̄)
2π


eiqθ +

∞
j=1


α∗(η̄, t)jei(q+j)θ

+α(η̄, t)jei(q−j)θ   dθdη̄.

Exchanging the order of the infinite sum with the two definite
integrals, all terms in the sum are now proportional to the delta
function,

δ(q ± j) =
1
2π

 2π

0
ei(q±j)dθ,

with j ∈ N. Thus, the infinite sum collapses to a single term, and
we have

zq(t) =




∞

−∞

g(η̄)α∗(η̄, t)|q|dη̄, q < 0

1, q = 0
∞

−∞

g(η̄)α(η̄, t)qdη̄, q > 0.

(A.6)

Similar to the discussion in the main text following Eq. (17), the
η̄-integral can be evaluated in closed form if g(η̄) is given by
the Lorentzian distribution function Eq. (5). Specifically, we can
analytically continue g(η̄) into the upper complex η̄ plane and the
normalized Lorentzian distribution can be rewritten as,

g(η̄) =
∆

π

1
(η̄ − (η0 + i∆))(η̄ − (η0 − i∆))

.

One can clearly see that g(η̄) has two simple poles η̄ = η0 ± i∆
with one in the upper half of the complex η̄ plane, and the other
in the lower half. Then, by choosing an infinite semi-circle contour
in the upper η̄ plane to close our integral, zq can immediately be
evaluated at its residue η̄ = η0 + i∆,

zq(t) =

α
∗(η0 + i∆, t)|q|, q < 0

1, q = 0
α(η0 + i∆, t)q, q > 0.

(A.7)

Finally, by defining z(t) ≡ z1(t) = α(η0 + i∆) to be the first
Daidomoment, Eq. (A.7)makes it evident that the remaining Daido
moments zq(t) can be expressed as the qth powers of the first
moment z(t), i.e., zq(t) = zq(t) [q ≥ 0] and zq(t) = (z∗)|q| [q < 0].
Substituting this result into Eq. (A.5), we then have our desired
expression for H(z, n), Eq. (12).

Appendix B. The Watanabe–Strogatz variables

Here we provide additional details regarding the specification
of initial conditions for the discrete network. In Ref. [14], Marvel
et al. show that the set of phase variables


θj(t)

N
j=1 of any network

given by the sinusoidally coupled form of Eq. (9), such as our theta
neuron network, possesses an extraordinary degree of symmetry
given by the Möbius transformation

tan

θj(t)− Ψ (t)

2


=

1 − σ(t)
1 + σ(t)

tan

ψj − Φ(t)

2


, (B.1)

for j = 1, . . . ,N . Here,

ψj
N
j=1 is a set of N constants of motion,

and σ(t),Ψ (t), and Φ(t) are known as the Watanabe–Strogatz
(WS) variables [15]. (We have written Eq. (B.1) in the form
given in Ref. [19]). Remarkably, through the above transformation
equation, the N phase variables


θj(t)

N
j=1 are mapped to the N

constants of motion, and the three Watanabe–Strogatz variables
carry all the temporal dynamics of the N-dimensional discrete
network. This remarkable property is a direct consequence of the
sinusoidal form of the globally coupled network [14]. It can be
shown that the OA manifold, in which the asymptotic mean field
dynamics of our network resides, corresponds to the special case in
which theWS constants ofmotion {ψj}

N
j=1 are evenly distributed on

the unit circle [18,19,14].When the network dynamics is restricted
to the OA manifold, two of the WS variables are directly related
to the macroscopic mean field: z = reiφ = σ eiΨ . The remaining
WS variable, Φ , is an additional macroscopic degree of freedom
that essentially describes the spread of the oscillator phases with
respect to the mean phase of the population.

To construct the full microscopic initial conditions for our
discrete network, we specify a desiredmacroscopic mean field z as
well as a value ofΦ . Then we use Eq. (B.1), with the constraint that
theWS constants of motion be uniformly distributed on [0, 2π ], to
identify a full set of initial phase angles


θj
N
j=1.
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