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Abstract

Motivated by the observation that applied electric !elds modulate hippocampal seizures, and
that seizures may be asynchronous, we modeled synaptically coupled two-compartment hip-
pocampal pyramidal neurons embedded within an electrically resistive lattice in order to exam-
ine network synchronization properties under the in4uence of externally applied electric !elds.
Excitatory electric !elds were shown to synchronize or desynchronize the network depending
on the natural frequency mismatch between the neurons. Such frequency mismatch was found
to decrease as a function of increasing electric !eld amplitude. These !ndings provide testable
hypotheses for future seizure control experiments.
c© 2002 Elsevier Science B.V. All rights reserved.
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Since the 1950s, it has been generally assumed that seizures are manifestations of
excessive synchrony. However, recent experiments using dual intracellular impalements
in the CA1 region of rat hippocampal slices suggest that neurons may desynchronize
as seizures initiate, and resynchronize as seizures terminate. In addition, theoretical
work has recently established that sustained activity can be supported by collectively
asynchronous states [7]. These results, in juxtaposition with recent demonstrations that
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Fig. 1. (a) Currents and conductances for a single PR neuron. (b) Synaptically coupled neurons embedded
within a resistive array modeling the electric properties of CA1. Black and gray arrows indicate NMDA
and AMPA excitatory synapses, respectively. The terminal resistances are chosen such that the lattice is
equivalent to a horizontally in!nite lattice.

electric !elds can modulate neuronal dynamics and suppress seizure-like activity [4,5],
have motivated the present work. We seek to gain a better understanding of the syn-
chronization properties of populations of neurons, and in particular, how such synchrony
may be modulated with electric !elds.
We report results based on a computational model that we have explicitly designed to

include electric !eld interactions. Since the presence of an electric !eld induces spatial
polarization in neurons [1,2,12], the minimum individual neuronal unit must have at
least two spatially separated compartments. We therefore chose the two-compartment
lumped Pinsky–Rinzel (PR) model neuron, which consists of a dendritic and a somatic
compartment separated by a !nite conductance [11]. For the present work, two such
neurons were embedded within a lattice of resistors which models the extracellular
medium, and a potential di0erence was imposed along the somatic–dendritic axis. In
addition to interacting electrically via the resistive network, the neurons were also
coupled via AMPA and NMDA synapses.
A schematic representation of the PR model neuron is shown in Fig. 1(a). Speci!c

details can be found in Refs. [5,11]. 1 Two neurons were arranged in the resistive
array as shown in Fig. 1(b), and an externally applied electric !eld was introduced
by imposing a potential di0erence between Vapp and ground. In addition to varying
Vapp, we also vary the di0erence Ggc between the neurons’ internal soma-dendrite
conductances (g(1)c = 2:1 mS=cm2, and g(2)c = (1− �)g(1)c , where �= 0–30%).

1 The parameters were chosen as in Ref. [11], with Id = 0:7 �A=cm2, Is = 0, gNMDA = 0:03 mS=cm2,
gAMPA = 0:0045 mS=cm2 and [K+]o = 3:5 mM. The potassium reversal potential relative to −60 mV is
VK =−38:56 mV.
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Fig. 2. (a) Tracings of the somatic voltage from two neurons within the network. (b) (i) � vs. electric !eld
strength for two di0erent levels of parameter mismatch. � and V (1;2)soma as a function of time for an electric
!eld of 600 mV/cm in: (ii) the synchronous case, gc = 2%; (iii) asynchronous case, gc = 20%.

To characterize synchronization, we employed a phase locking index � de!ned by
�2=〈cos�(t)〉2+〈sin�(t)〉2 [8,10], where 〈 〉 denotes time-average. �(t) is the relative
phase, de!ned as �(t(1)k )=2�(t(1)k −t(2)m )=(t(2)m+1−t(2)m ), where k and m are event numbers
for neurons 1 and 2, respectively, and the times t are de!ned by threshold crossings.
Fig. 2(a) shows sample tracings of the somatic voltages and illustrates the procedure for
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Fig. 3. (a) Synchrony phase diagram. � is plotted in gray-scale (black = 1, white = 0) as a function of the
electric !eld strength and the neuronal disparity. Network activity is fully suppressed by moderate inhibitory
applied !elds of approximately −300 to −400 mV=cm. (b) Natural frequency mismatch G! between the
neurons as a function of the applied electric !eld and neuronal disparity (black triangle indicates G!¡ 0:1;
medium gray triangle indicates G! ∼ 0:1; light gray triangle indicates G!¿ 0:1).

calculating �. Note that � varies between 0 and 1 for unsynchronized and synchronized
activity, respectively.
Fig. 2(b) shows that by varying the strength of the applied electric !eld, the neurons

either synchronize or desynchronize depending on the parameter mismatch Ggc. Neu-
rons with large parameter mismatch are observed to phase-lock for moderate
inhibitory (negative) electric !elds, and to desynchronize as the !eld becomes
excitatory (positive). This is consistent with results reported by Golomb and Hansel
[6], who found that in heterogeneous ensembles, increasing coupling tends to desyn-
chronize network dynamics. However, for small parameter mismatch, we observed that
suMciently large electric !elds can resynchronize the neurons.
A more complete summary of our network’s dynamics is presented in Fig. 3(a). Here,

we show the � index as a function of both the applied electric !eld strength and the
parameter mismatch Ggc. Several features are prominent. An extensive asynchronous
region is present for large excitatory !elds and large neuronal disparity, again, in agree-
ment with Golomb and Hansel’s observation in Ref. [6]. Second, large inhibitory !elds
tend to induce phase locking even when neuronal disparity is large. Third, moderate in-
hibitory !elds suppress collective network activity (consistent with the in vitro seizure
suppression experiments of Gluckman et al. [4,5]). Perhaps the most interesting fea-
ture of this phase diagram is the boundary between the phase-locked and asynchronous
states. As observed in Fig. 2(b), for small neuronal disparity there is a regime where
moderately strong excitatory !elds desynchronize the network, but stronger !elds leads
to resynchronization. This threshold is seen in Fig. 3(a) to increase with increasing
Ggc.
We now argue that this nontrivial boundary can be explained using a simple phase

oscillator model [3,8,13]. In our network, the dynamics of the individual units are
predominately periodic spikes or bursts, and the network is well approximated by
a system of coupled phase oscillators for a signi!cant range of parameters. Details
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Fig. 4. Natural frequency mismatch G! as a function of the applied electric !eld for Ggc = 4%.

pertaining to the reduction of our system will be presented elsewhere [9]. Here, we
show that this simple approach explains the synchrony/asynchrony boundary described
above.
Fig. 3(b) shows the degree of natural frequency mismatch G! between our two

individual units as a function of applied electric !eld and neuronal disparity. To measure
G!, each neuron was observed in isolation, subject only to the applied electric !eld.
The boundary de!ned by G! = � � 0:1 Hz is such that for G!¿�, the network is
in the asynchronous state, and for G!¡�, the neurons phase lock to each other. It is
remarkable that this simple criterion reproduces the observed transition boundary rather
well. In particular, it correctly predicts that for small neuronal disparity (Ggc¡ 6%),
increasing the (excitatory) electric !eld !rst desynchronizes and then resynchronizes
the network (see the circled region in Fig. 3(b)). To clarify this point, Fig. 4 shows
that G! decreases for increasing (excitatory) electric !eld at Ggc = 4%. One can
understand this by noting that each individual neuron’s spiking rate is a monotonically
increasing concave-down function with respect to the applied electric !eld. Thus, as
the spiking rate increases, the corresponding incremental increase is smaller. In the
small disparity regime, the initial frequency mismatch is small enough such that as the
excitatory !eld increases, the di0erence between the spiking rates of the two neurons
decreases below the critical level G!∗ = �, and phase locking is observed.

We have demonstrated that a computational model of two-compartment neurons em-
bedded within a resistive extracellular medium exhibits both complex phase locking
and asynchronous behavior as a function of the applied electric !eld and the degree of
neuronal disparity. The observed dynamics are consistent with recent theoretical and
experimental results. Most importantly, there exists a critical value of natural frequency
mismatch which determines the synchronization properties of the network. We specu-
late that the observed phase-locking threshold may be explained in terms of a system
of coupled phase oscillators.
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