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Abstract. Models with a time delay often occur, since there is a naturally occurring

delay in the transmission of information. A model with a delay can be noninvertible,

which in turn leads to qualitative differences between the dynamical properties of a
delay equation and the familiar case of an ordinary differential equation. We give

specific conditions for the existence of noninvertible solutions in delay equations, and

describe the consequences of noninvertibility.

1. Introduction. Delay differential equations arise in many important applica-
tions. For example, they are inherent in biology due to finite information transmis-
sion times. Of interest are delay equations of the form

dx

dt
(t) = F (x(t − τ)) − γx(t), (1)

where γ > 0, and initial conditions are specified by x(t) = φ(t) for t ∈ [t0−τ, t0]. For
example, this is the form of the celebrated Mackey-Glass equation for dynamical
diseases [27, 28, 32], where x(t) describes the white blood cell density at time t,
γ is the blood cell death rate, and F is a nonlinear function for production rate
as a function of density. The delay results from stem cell maturation time. The
following F corresponds to Equation 4b in Mackey and Glass’s original paper [27]:

F (x) = ax
θk

θk + xk
, (2)

where a > 0, θ > 0, and k > 1 are shape parameters (See Figure 1, top left).
Delay equations of the same form are also used as models for dynamical diseases

in references [18, 19, 20, 29, 35]. Similar delay equations are used to describe
irregular breathing in adults [13, 27, 36, 40], and in models for lasers [3, 21].

It is well known that for an ordinary differential equation dx
dt

= F (x), where F
is Lipschitz, two different initial states display distinct solutions both forwards and
backwards in time. Thus looking at the initial state of a quantity modeled by an
ODE, it is possible to fully and uniquely describe both the future and the history
of its time evolution. This non-overlapping nature of solutions is an important
property, as it affects not only the ability to know the past, but also the qualitative
behavior of dynamical structures of the model, such as global invariant manifolds,
synchronization manifolds, and basins of attraction.
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Figure 1. Top left: Graph of the function F in Equation (2),
where a = 1, θ = 1, and k = 10. Top right and bottom: Solutions
to the Mackey-Glass equation (Equations (1) and (2)) for three
different delays: τ = 3 (top right), τ = 6 (bottom left), and τ = 20
(bottom right). In each case, a = 0.2, θ = 1, k = 10.0, and γ = 0.1,
and the initial condition is the linear function x(t) = 0.015t+0.8027
on [−τ, 0].

Unlike ordinary differential equations, the initial value problem in Equation (1)
can have solutions which are not one-to-one no matter how smooth F is assumed
to be (cf. Ch. 2 and 3 of [14]). We call this nonuniqueness noninvertibility of
solutions. In this paper, we classify the noninvertibility of solutions of equations of
the following form:

dx

dt
(t) = H(x(t), x(t − τ)), (3)

where x(t) = φ(t) on [t0 − τ, t0], and H : R
2 → R is a smooth function. We then

apply these results to the specific case given in Equation (1).
Many of the major dynamical results from ODEs and invertible iterated maps

carry over to noninvertible differential equations and noninvertible maps, including
the shadowing lemma, the existence of local invariant manifolds, and Poincaré sec-
tions [17, 16, 15, 23, 24, 38, 39]. However, the presence of noninvertibility can give
rise to fundamentally different dynamical properties than those seen in the ODE
case. Examples occur in adaptive control systems [1, 8, 9], neural networks [33],
numerical methods [11, 26], and synchronization [2, 4, 5, 6, 22, 37]. Further the-
oretical treatments of noninvertible dynamics in finite dimensions can be found in
citations [10, 34] and references therein.

Lorenz’s work and the followup paper of Frouzakis, Kevrekidis, and Peckham [11,
26] discuss the connection between the onset of noninvertibility and chaotic behavior
within an attractor in a specific planar map. When the attractor intersects the
singular set of the map, there is an increase in the attractor’s complexity. Since the
singular set of a finite dimensional map is typically codimension one, this type of
bifurcation is expected in an open set of one-parameter families.
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Knowing when there is noninvertibility of solutions is crucial to classifying the
dynamics of solutions. In fact, for the initial value problem (3), the existence of non-
invertible solutions is generically a necessary condition for the existence of chaotic
solutions: Mallet-Paret and Sell have shown that if the nonlinearity F is monotone
for the initial value problem given in Equation (3), then the Poincaré-Bendixson
theorem holds, meaning that solutions are very simple and non-chaotic [31, 30].
That is, this type of delay equation, when monotone, behaves like a planar ordinary

differential equation. Monotonicity for Equation (3) is defined to mean ∂H(ξ,η)
∂η

6= 0

for all (ξ, η) ∈ R
2. In the current paper, we show that monotonicity implies in-

vertibility. That is, a backwards continuation of solutions is unique (though it may
not exist). In fact, monotonicity and invertibility are generically equivalent: If the
derivative above is equal to zero, along with some generic conditions on the second
partial derivatives which are given in Theorem 2, then there exist noninvertible
solutions.

In contrast to autonomous ordinary differential equations, for which three dimen-
sions are required for chaotic solutions, solutions to delay equations with one spatial
dimension can exhibit chaotic behavior. For example, the Mackey-Glass equation
above has chaotic solutions. In addition, Gedeon and Lani-Wayda have each given
examples to show that chaotic solutions occur even in simple cases of non-monotone
delay equations [12, 25].

The paper proceeds as follows: In Sections 2 and 3, we begin with some exam-
ples of delay equations with noninvertible solutions. In Section 4, we give necessary
conditions for a solution to be noninvertible for the initial value problem in Equa-
tion (3). These are specific geometric properties necessary for a solution to have
two distinct backward continuations. In Section 5, we give stronger results for the
initial value problem in Equation (1). Namely, we show that if a solution has two
distinct backward continuations starting at time tm, then both continuations have
critical points at times tm − kτ , where the degree of the critical points increases
with k. Section 6 contains concluding remarks.

2. Mackey-Glass example. The Mackey-Glass equation given by Equations (1)
and (2) with t0 = 0 is a delay equation displaying noninvertibility. For small values
of the delay parameter τ , solutions to the Mackey-Glass equation converge to a
stable equilibrium. (See Figure 1a.) When τ is larger, solutions converge to a
periodic oscillatory solution with period between 2τ and 4τ [13]. (See Figure 1b.)
When τ grows still larger, solutions are known to become chaotic. (See Figure 1c.)
Note that this chaotic behavior indicates noninvertibility: By the results of Mallet-
Paret and Sell [31, 30], chaotic behavior does not occur for delay equations of this
form satisfying monotonicity (invertibility). Since the function F is unimodal, the
results of the next two sections show directly that for the Mackey-Glass equation,
there are noninvertible solutions. Figure 2a shows two different initial states which
result in the same solution from time zero onwards.

Note that for this example, we have chosen Mackey and Glass’s nonlinearity from
Equation 4b of their orginal paper [27]. Their Equation 4a is monotone increasing,
which implies unique backwards continuations.

3. Another example. Assume that solutions x(t) and y(t) defined on [t0−τ, t0+ε]
have the property that there exists a T > t0 − τ such that x(t) = y(t) for all
t > T . We denote by tm the minimal value of T for which this statement holds.
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Figure 2. Left: Two solutions for the Mackey-Glass equation
chosen so that x(t) = y(t) for all t ≥ tm = 0. Parameter τ = 10.
All other parameters are the same as in the previous figure. Right:
A pair of noninvertible solutions with tm > 0 from Section 3.

In this paper, we concentrate on the case where tm > t0. At the end of Section 4,
we show that the case of t0 − τ < tm ≤ t0 is straightforward. We refer to x(t)
and y(t) as distinct if there exists a t such that x(t) 6= y(t). In the previous
example, x(t) and y(t) were distinct solutions, and tm = t0 = 0. In the following
example, tm > t0 = 0. See Figure 2b. Subsequent sections demonstrate that the
distinction between tm = t0 and tm > t0 is extremely significant. This is due to the
smoothness properties of solutions. Namely, functions as in Figure 2a may not be
differentiable at t = tm = t0, whereas the functions in Figure 2b are all differentiable
at t = tm > t0. The delay equation is the initial value problem in Equation (1).
For simplicity γ = 0, τ = 1, and F (x) = x(2 − x). A detailed calculation using
forward integration shows that the following two continuous initial conditions lead
to distinct solutions which are identical starting at time tm = 4/9.

x(t) =



















1 + 1
2

√

4 − 2( 19
3 +6t−3(t+ 14

9 )2)√
−

11
3 −3t+3(t+ 14

9 )2−(t+ 14
9 )3

when − 1 ≤ t ≤ −5/9

1 +
√

− 2
3 − 3t + 3(t + 5

9 )2 − (t + 5
9 )3 when − 5/9 ≤ t ≤ 0.

y(t) =



















1 − 1
2

√

4 +
2( 19

3 +6t−3(t+ 14
9 )2)√

−
11
3 −3t+3(t+ 14

9 )2−(t+ 14
9 )3

when − 1 ≤ t ≤ −5/9

1 −
√

− 2
3 − 3t + 3(t + 5

9 )2 − (t + 5
9 )3 when − 5/9 ≤ t ≤ 0.

4. Noninvertible solutions. In this section, we give a specific set of conditions
for the existence of noninvertible solutions for delay equations. For the initial value
problem in Equation (3), assume H and φ are continuous. Then there exists ε > 0
and a unique continuous function x(t) such that x(t) has the prescribed initial value
φ(t) on [t0 − τ, t0] and is a solution to the delay equation (3) on [t0, t0 + ε]. See [7]
or [14].

Henceforth, without loss of generality, we simplify the notation and assume that
t0 = 0. Let H(r, s) be a smooth Ck function with k ≥ 2. Assume ∂H

∂s
(r0, s0) = 0,

and ∂2H
∂s2 (r0, s0) 6= 0. Then by the implicit function theorem for any (r, s1) near

(r0, s0) with ∂H
∂s

(r, s1) 6= 0, there exists s2 6= s1 such that H(r, s2) = H(r, s1). The
following two theorems show that all noninvertible solutions to Equation (3) arise
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from this and other similar equalities of H values. The first theorem gives necessary
conditions to guarantee noninvertibility of solutions.

Theorem 1. Suppose that x(t) and y(t) are distinct solutions to Equation (3) with
continuous initial conditions, H(r, s) is C1, and that there is some least time tm ≥ 0
for which x(t) = y(t) for all t ≥ tm. Then H(x(t), x(t − τ)) = H(y(t), y(t − τ)) for
t ≥ tm, and ∂H

∂s
(x(tm + τ), x(tm)) = ∂H

∂s
(y(tm + τ), y(tm)) = 0.

Proof. The proof of this theorem uses a similar technique as was used to show
backwards uniqueness in Mallet-Paret and Sell [30].

Under the hypotheses of the theorem, the functions x(t) and y(t) are differentiable
for t > 0, since they solve a differential equation with continuous initial conditions.
This implies that x′(t) = y′(t) for t > tm. Since x(t) and y(t) solve Equation (3), this
is equivalent to the statement that H(x(t), x(t− τ)) = H(y(t), y(t− τ)) for t > tm.
By the continuity of H, this equation holds for t = tm as well. Since tm is the
smallest time such that x(t) and y(t) are equal for all greater t, x(t) and y(t) are not
identical for any time interval with right end point tm. If ∂H

∂s
(x(tm +τ), x(tm)) 6= 0,

then by the implicit function theorem, for t = tm + τ the differential equation (3)
is locally uniquely invertible, which implies that x(t) = y(t) for a neighborhood of
tm, which contradicts the assumption on the minimality of tm.

Thus although there may be infinitely many noninvertible solutions, any pair of
noninvertible solutions meet at the point at which the function H has a critical point
with respect to the second variable. In the following theorem, we obtain stronger
results for the case tm > 0.

Theorem 2. Assume that x(t) and y(t) are distinct solutions to Equation (3)
with continuous initial conditions, H is CL+2, L ≥ 0, and that there exists a least
time tm > 0 such that x(t) = y(t) for t ≥ tm. Let S =

{

(r, s) : ∂H
∂s

= 0
}

. Let

(r0, s0) = (x(tm + τ), x(tm)). Assume that ∂2H
∂s2 (r0, s0) 6= 0. Thus we can write S

as the graph of a CL+1 function g. That is, S = {(r, s) : s = g(r)}. Then x′(tm) =
y′(tm) = g′(r0)x

′(tm + τ). In fact, as long as x(t) and y(t) are CL+1 at tm, for all

1 ≤ j ≤ L, djx
dtj (tm) = djy

dtj (tm) = djg(x(tm+τ))
dtj .

Proof. Functions x(t) and y(t) are equal for all t ≥ tm but are not identical for
t < tm. Thus there exists a sequence of times tk converging to tm such that
x(tk) 6= y(tk), but for k sufficiently large, H(x(tk + τ), x(tk)) = H(x(tk + τ), y(tk))
(since y(tk + τ) = x(tk + τ)). Define the curve Γ = {(t, g(x(t + τ)))}. Combining

the equality of the H values, ∂2H
∂s2 (r0, s0) 6= 0, and the fact that x(tm) = y(tm) for

tk sufficiently close to tm, x(tk) and y(tk) are the two local inverses of H(x(tk +
τ), x(tk)), one lying above and one lying below the curve Γ for t = tk. Thus for
fixed but sufficiently large k, the two points x(tk) and y(tk) are on opposite sides
of the curve Γ. See Figure 3. There are two possibilities:

1) Assume that there is a time tL near tm, with tL < tm such that for each fixed t
such that tL < t < tm, the point g(x(t+τ)) lies between x(t) and y(t). Since the two
functions x(t) and y(t) both have the same derivative at tm, they must be tangent to
the curve (t, g(x(t+ τ))) at tm. That is, x′(tm) = y′(tm) = g′(x(tm + τ))x′(tm + τ).

Working iteratively, a Taylor series expansion of x(t) and y(t) at tm gives the
higher derivative cases: Let α(t) = x(t)− g(x(t+ τ)), and β(t) = y(t)− g(x(t+ τ)).
The functions α and β are CL+1 functions. We showed above that for t < tm but
near tm, α and β have opposite signs. We also know that α′(tm) = β′(tm) = 0.
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Figure 3. A depiction of solutions x(t) and y(t) and singularity
curve Γ in the proof of Theorem 2.

Assume that α(n)(tm) = β(n)(tm) = 0 for all 1 ≤ n ≤ N − 1, where N − 1 < L. A

Taylor series expansion gives that for some c ∈ (t, tm), α(t) = α(N)(tm) (t−tm)N

N ! +

α(N+1)(c) (t−tm)(N+1)

(N+1)! . The same formula holds for β in place of α. By the smooth-

ness properties of α and β, for t sufficiently close to tm, the sign of α(t) is de-
termined by the sign of α(N)(tm). Functions α and β are of opposite signs, but
αN (tm) = βN (tm), so α(N)(tm) = 0.

2) If both functions oscillate across the curve S arbitrarily close to tm, then by
the mean value theorem, there is a sequence of points tj converging to tm such that
x′(tj) converges to the mean value of the curve Γ. Therefore x′(tm) is equal to the
tangent to S. The proof of the equality of higher derivatives is similar.

We end this section with a comment on sufficient conditions for noninvertible
solutions. If a given solution satisfies all of the above necessary conditions for
noninvertibility at a time tm > 0, it is still not easy to guarantee the existence
of two distinct backward continuations. However, it is very straightforward to
write down sufficent conditions for −τ < tm ≤ 0. Namely, if a solution x1(t)
with continuous initial condition φ1(t) is such that ∂H

∂s
(x(tm + τ), x(tm)) = 0 and

∂2H
∂s2 (x(tm+τ), x(tm)) 6= 0, then take φ2(t) to be the other local preimage of H(x(t+
τ), x(t)). If φ2(t) exists for all −τ < t < 0, then there is a second solution x2(t)
which is identical to x1(t) for all t ≥ tm.

5. Noninvertibility and one-dimensional maps. In this section, we apply the
general results from the previous section to the broad class of delay equations given
in Equation (1), where F is any smooth nonlinear function. In this case, we are
able to extend the results from the previous section to show that the values of
noninvertible solutions are given by a one-dimensional iterated map. The following
are restatements of Theorems 1 and 2.

Corollary 1. Suppose that x(t) and y(t) are distinct solutions to Equation (1)
with continuous initial conditions and F smoooth, and that for some least tm ≥ 0,
x(t) = y(t) for all t ≥ tm. Then F (x(t)) = F (y(t)) for t ≥ tm − τ , and F ′(x(tm)) =
F ′(y(tm)) = 0.

Corollary 2. Assume that x(t) and y(t) are distinct solutions to Equation (1)
with continuous initial conditions and F smooth, and that there exists a least time
tm > 0 such that x(t) = y(t) for t ≥ tm. Then x′(tm) = y′(tm) = 0. In fact, if x
and y are (k+1)-times differentiable, then the first k derivatives vanish: x(j)(tm) =
y(j)(tm) = 0 for 1 ≤ j ≤ k.

This result makes it straightforward to recognize possible noninvertible solutions
by looking at the graph of x(t) near tm. Namely, one looks for critical points of the
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solution at a height equal to a critical point of F . The problem with this result is
that since we do not know when tm occurs, we must look at the graphs of solutions
for arbitrarily large times. To remedy this, the next result shows that noninvertible
solutions have critical points backwards from tm with period τ .

Theorem 3. Assume x(t) and y(t) are noninvertible solutions to Equation (1)
with continuous initial conditions such that tm > 0 is the least time for which
x(t) = y(t) for all t ≥ tm. Assume that F is a generic smooth function. For a
fixed positive integer n, if tm > nτ ≥ 0, then x(t) and y(t) have critical points at
tm, tm − τ, tm − 2τ, . . . , tm − nτ . These critical points are of degrees n + 1, n, . . . , 1
respectively.

Proof. In order to prove Theorem 3, we use the following standard result on the
smoothness of solutions of a delay equation. See [14]: If the initial function φ(t) is
continuous, then the solution to the delay equation in Equation (3) is C1 for t > 0.
It is C2 for t > τ . In general, the solution is Ck for t > (k − 1)τ .

Assume that n is the largest integer such that 0 ≤ nτ < tm. From the first
paragraph of this proof, we know that x(j)(tm) exists for all j such that 1 ≤ j ≤ n+1.
From Corollary (2), the derivatives up to n are all zero. Define

G(x) = F (x)/γ.

The following is our generic assumption on F : The critical points of G are nonde-
generate and not periodic under G. It is straightforward to show that for a differ-
entiable function G : R → R, generically the critical points of G are nondegenerate,
not periodic, and no two critical points are in the same orbit.

Let k = 0. By the previous paragraph, x has a degree (n + 1 − k) critical point
at tm − kτ . Further, by Equation (1), F (x(tm − τ)) − γx(tm) = x′(tm) = 0, which
implies that G(x(tm − τ)) = x(tm).

Let k be such that 1 ≤ k ≤ n. Make the inductive hypothesis that for all
j = 0, . . . , k, x has a degree (n +1− j) critical point at tm − jτ , and that for j ≥ 1,

G(x(tm − (j + 1)τ)) = x(tm − jτ).

Therefore the (k + 1)th iterate of x(tm − (k + 1)τ) is a critical point. By the
generic hypothesis, x(tm − (k +1)τ) is not a critical point for G, which implies that
F ′(xm − (k + 1)τ) 6= 0. Differentiating Equation (1) once gives

x′′(tm − kτ) = x′(tm − (k + 1)τ)F ′(x(tm − (k + 1)τ)) − γx′(tm − kτ).

By the induction hypothesis, x′′(tm − kτ) = x′(tm − kτ) = 0. Therefore

x′(tm − (k + 1)τ) = 0.

Combining x′(tm − (k + 1)τ) = 0 with Equation (1) at t = tm − (k + 1)τ gives

G(x(tm − (k + 2)τ)) = x(tm − (k + 1)τ).

To show that there is a degree (n + 1 − (k + 1)) critical point at tm − (k + 1)τ ,
differentiate Equation (1) j times where j is successively taken to be 2, . . . , n+1−k,
and evaluate at t = tm−kτ . In each case, since it is already known that for i < j−1,
x(i)(tm − kτ) = 0, the equation reduces to

0 = x(j−1)(tm − (k + 1)τ)F ′(x(tm − (k + 1)τ)).

The statement F ′(x(tm − (k + 1)τ)) 6= 0 implies that x(j−1)(tm − (k + 1)τ) = 0.
This completes the proof.
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The following corollary follows from the proof of the previous theorem. It
states that the height of the critical points is determined by iteration under a
one-dimensional map.

Corollary 3. Let G(x) = F (x)/γ, where F is a smooth function with nondegenerate
critical points, and γ is the constant from Equation (1). Assume x(t) and y(t)
are noninvertible solutions with continuous initial conditions such that tm is the
first time for which x(t) = y(t) for t ≥ tm > 0. The sequence of critical points
described in Theorem 3 is a sequence of preimages of x(tm) under G: That is, for
k = 0, 1, . . . , n, G(x(tm − (k + 1)τ)) = x(tm − kτ).

Using this result, the presence of noninvertibility can be translated into a condi-
tion on the parameter γ.

Corollary 4. Under the hypotheses of Theorem 3, if there are noninvertible solu-
tions to the initial value problem (1) for tm > 0, then there exists a critical point
xm of F such that xm has two preimages under F/γ.

For example, in the case of the nonlinearity used for the original Mackey-Glass
equation given in Equation (2), this corollary gives the condition that there are no
noninvertible solutions for γ > a(k − 1)/k with tm > 0.

6. Conclusion. Systems which depend on time delays are prevalent in biology. For
example, all real neural systems have propagation delays, and population fluctua-
tions often are cyclical with delayed feedback. In contrast to systems modeled by
ordinary differential equations, solutions for a delay equation may overlap, meaning
that two distinct solutions may become equal starting at a time tm ≥ 0. That is,
looking at the current state, the past may be unknowable. This noninvertibility has
a fundamental effect on the dynamical aspects of the system.

This paper has given a classification of the behavior of noninvertible solutions
for the initial value problem in Equation (3). Specifically, the kth derivative of H
evaluated at the noninvertible point t = tm minus kτ is specified by the formula
given in Theorem 2. For the initial value problem in Equation (1), where F is
an arbitrary smooth function, this formula simplifies to saying that every kτ units
backwards from t = tm, the solution has a critical point with increasingly high
degree.

Such conditions for the onset of noninvertibility in a finite dimensional attractor
are important since they lead to a change in the structure of the attractor. For
example, Lorenz showed a two-dimensional case in which noninvertibility resulted
in an increase in the attractor’s complexity [26].

The class of noninvertible solutions for delay equations is extremely specific and
typically does not occur in direct simulations. We conjecture that unlike the case
of finite dimensional noninvertible maps, a bifurcation to increased complexity of
an attractor is not observable (i.e. non-generic) for families of delay equations. We
further conjecture that for a fixed generic family of delay differential equations,
there exists a global bound on the least time tm described above. There is evidence
to indicate that just as in the finite dimensional case, noninvertibility and chaotic
behavior are linked for solutions to delay equations. The lack of chaos in the mono-
tone (invertible) case for a higher dimensional generalization of the initial value
problem in Equation (1) was shown by Mallet-Paret and Sell, whereas Gedeon and
Lani-Wayda found chaos in non-monotone examples.
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Intrinsic dynamical structures for differential equations possessing noninvertibil-
ity significantly differ from the invertible case. Such effects are independent of
noise, and cannot be reduced even by careful experimentation or noise reduction
techniques. For example, the presence of noninvertibility fundamentally changes
the invariant manifolds such that they are no longer manifolds, may self-intersect,
and may not even have a consistent dimension. In the specific case of coupled
systems, synchronization sets for ordinary differential equations are themselves a
type of invariant manifold. We have already shown that in the finite dimensional
noninvertible case, synchronization sets become multivalued. This hampers the ef-
fectiveness of many of the standard synchronization detection methods [37]. In the
delay equations case as well, they will no longer retain most of the nice properties
seen for the case of coupled ordinary differential equations.
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