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Chaos synchronization in coupled systems is often characterized by & inetpveen the states of

the components. In noninvertible systems, or in systems without inherent symmetries, the
synchronization set—by which we mean gréph—can be extremely complicated. We identify,
describe, and give examples of several different complications that can arise, and we link each to
inherent properties of the underlying dynamics. In brief, synchronization sets can in general become
nondifferentiable, and in the more severe case of noninvertible dynamics, they might even be
multivalued. We suggest two different ways to quantify these features, and we discuss possible
failures in detecting chaos synchrony using standard continuity-based methods when these features
are present. €2003 American Institute of Physic§DOI: 10.1063/1.1512927

Since the surprising discovery that chaotic systems can |. INTRODUCTION
synchronizel? many different kinds of nonlinear syn-
chrony have been considered in the literaturé We focus
here on the geometry of synchronization structures that

In this work we consider a general drive/response system
F:XXY—-XXY, where §,.1,Yn+1)=F(X,,y,) and is of

T . o the form,
arise in such systems and point out several complicating
factors that are not generally appreciated. These more Xn+1=F(Xn),
complicated states may arise in noninvertible systems, in
systems with critical points, and in systems of signifi- Yn+1=9(Xn Yn,C). @

gantly dissimilar nonlinear elemgnts. An_important case The drivexe X and the responsge Y are state vectors

is that of neuronal systems, which consist of many very andY are compact finite dimensional spaces, and thathd

different interacting classes of neurons, each of which ex- g are smooth or piecewise smooth maps. The paranteter

hibit great variation in their morphology. Nontrivial syn- characterizes the coupling or interaction strength. We expect

chronous relationships in such systems may have physi- that many of our observations hold in the case of bidirection-

ological significance, and may even correspond to ally coupled system .1°Un.idirectic.)n,ally coupled flows may

perceptual events! We identify several different geomet- b€ reduced to this form via a Poincaetime-T map.

ric features that can arise in these more complicated situ- Generalized synchrpﬁy is a useful concept in the

ations, giving several examples and providing an intuitive analysis O_f coupled nonlinear SVS‘e”.”S' and is usually defined
. . by the existence of a smooth, continuous map between the

explanation for each case. A good understanding of these

. . o phase space$ andY of the two component systems. For our

inherent mathematical features is important for the

. . f . | iy i purposes, we will be concerned with the maX—Y which
proper interpretation of experimental data, especially in associates atateof the first system with stateof the sec-

situations in which the detection and classification of such ;14 such that graghp) is invariant and attracting under the
synchronous states is of interest. In particular, we find  ayglution of the coupled systethThroughout this work, we
that most existing methods for detecting synchrony”  will refer to the synchronization setby which we mean
will be hampered by the inherent geometric features that  graph¢).? If the underlying dynamical equations have in-

we identify.® herent symmetry, grapt) typically has a simple structure.
For example, in the frequently studied case of coujdieh-

AWeb site: http://complex.gmu.edu tical oscillators, thex=y symmetry plane is invariant. In this
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case, when the components are synchronized, trajectories are

attracted to the plane of symmetry, and the synchronization tv

set is trivial. 1
The continuity and smoothness ¢fare important con-

siderations, especially with regard to the practical detection o

of nonlinear synchronous states in experimentally obtained
data. The existence of such states has been demonstrated in
both physicaf® and biological systenfsHowever, we illus- 0
trate below that many systems of current interest exhibit syn- (@) 0
chronization sets with geometric complications that can have
a detrimental effect on the detection of nonlinear synchrony
from measured data. In particular, noninvertible coupled sys- ~ ®u.s)
tems and systems lacking intrinsic symmetries can exhibit
synchronization sets with very complicated structures. Since 0.5
mismatches among coupled components are unavoidable—
indeed heterogeneous coupled systems are of more general
interest, especially when considering biological systems—a 0.04
good understanding of the geometry of the synchronization ~ - -

. (b) 0.0 0.5 u 1.0
sets of these more general systems is needed.

. A.C|Ose|y related concept g}symptotlc §tab|||t}}4A un_" FIG. 1. (a) The modified generalized baker’s map used as the driver in Eq.
directionally coupled system is asymptotically stable if two (2). The functionw(u,s) determines how the area of the lower rectangle in
(or more identical copies of the response synchronize(a) is stretched and contracted horizontally, as schematically depicted by the
when subjected to the same driving signal. More preciselyshading.(b) Plot showinge for three values of the parameter
for any two initial conditions Xg,Y;), (Xo,Yg) € XX Y which

lshare the s?.me initial "(.jrive_ stat;xo, we h.ave where 0<A <1 and 0<«<1. The driver, by which we mean
_|mnﬂw||yn(xo,y0,c)—yn(xo,yo,_c)II—O, whereyn(Xo,Yo;C) the (u,v) subsystem, maps the unit square into itself as il-
is they coordinate of thenth iterate of &.Yo) under the ,qyateq in Fig. 1a). The functionw(u,s) is a cubic poly-

dynamics of the full system, andis the coupling between omial in u defined by the following conditionsw(0.s)
the driver and response systems. This is similar to the idea of . w(18)=1; w(1/25)=1/2, and dw/iu(1/2s) =,s

“reliable response” in the generation of neuronal sigrials.

Asymptotic stability and generalized synchrony are equivas, 4 rious values of the parameter determines how the area

lent if thg driving system idnvertible and ha_s a ComPad within the lower rectangle of Fig.(&) is redistributed hori-
attractor'® We have observed, however, that it is possible to

) oo : ) ~ ~zontally on each iterate. The respongds a filter of the
have asymptotic stability in systems which are nonlnVert'bledrive’s variableu with ¢ controlling the transverse contrac-
for which grapli¢) is not even single-valuet.

In thi o ¢ th tion rate. The parametar, although technically not a cou-
n th|§ ﬁapgr we prophose art]:ate_gor!zatlon of the (SjtrlL_JCinng parameter in Eq(2), is meant to model the more gen-
tures which arise in such synchronization states, and link 5 'case in which the dominant dynamical effect of coupling

f[hese structures to speqﬂc featgres of the underlying d.yna“k; to alter the contraction rate transverse to the synchroniza-
ics. In Sec. Il we describe and illustrate these categories Ui, set. One should also note that the limitat0 is some-

ing a general driver/response dynamical system. In Sec. “lt'{{nes singular. In particular, nontrivial synchronous struc-

two methods of quantifying these structures is presented, aNres such as cusps and multivalued sets described in the
we review the implications of these structures for the practi-

| d . ¢ hronization 4 d c next section will persist for all values afexcept ac=0. At
cal detection of synchronization from measured data. ONz—0, the synchronization set collapses to the cugve
cluding remarks appear in Sec. IV.

=cos(2ru). Below, we varys andc to obtain various syn-
chronization sets with nontrivial geometric structures. In par-
Il. CATEGORIZATION ticular, we will be concerned with the map= ¢(x) which
associates atate of the drive system with astate of the

Itis conv_ement to use aSpeC'f'C form of E(d,)_to illus- response such that grah is invariant and attracting under
trate the various cases of interest. In the following, we takq

o " he evolution of the coupled system.
the driving system to be a modified baker's map and use a P y
simple filter of one of the driver variables for the responseA. Wrinkling

1.0+

where —1=<s=<1. This function, graphed in Fig.(B) for

Specifically, The first type of nontrivial structure is best illustrated
Ao(Uu,,s), vy<a, with s=1, so thatw(u,s)=1 and the drive reduces to the
Un+1:|)\+(1_)\)u v a standard baker's map. Referring to Fig@l this corre-
n n—o sponds to uniform horizontal contraction and vertical stretch-
vhla, vy<a, ing of the shaded rectangle. This case has been studied in
v”“:{(vn—a)/(l—a) vo>a (2)  Refs. 18 and 19, and we include it here for completeness.
' ' If, in Eq. (2), |c|<1, the response is asymptotically

Yn+1=CYnt+COS 27U, 1), stable for allx. As pointed out in Refs. 18 and 19, the syn-
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FIG. 2. Plots of the synchronization set of E&). The insets show the
function w. We sets=1, A\=0.8, anda=0.7, for whichhy;=—0.64. Note
thath,=Inc. (8) Smooth case¢c=0.3 and|hy|<|h,|; (b) wrinkled caserc
=0.8 and|hg|>|h,|. The curve in(b) is Holder continuous with exponent

The geometry of chaos synchronization 153

transverse contracting direction.|H,|<|hgy|, then¢ is gen-
erally not differentiable, but is only Hder continuous with
Holder exponerft equal to|h, /hy <1 at typical points.

Since the attractor of the generalized baker’s map is uni-
form in v, the synchronization set can be accurately visual-
ized in theuy plane. Graphs demonstrating both the differ-
entiable and nondifferentiable cases are given in Fi¢a. 2
and 2b), respectively. We call the development of nondiffer-
entiability in this fashion “wrinkling.”

One can gain intuition about the wrinkling process by
considering the following iterative geometric construction of
the synchronization set. This construction is the essence of
the graph transform method used first by Hadamard and later
by a number of mathematicians to prove the existence of
invariant manifold$2?*Begin with the graph of cos¢al) in
the unit interval.(The choice of the initial curve is not im-
portant; any smooth curve with appropriate boundary condi-
tions may be useflNext, join two copies of the initial curve
atu=\, each scaled vertically by and horizontally byx
and 1-\, respectively. Note that since the initial curve is
periodic in the interval and its first derivative is zero at both
ends, the combined curve is continuous in its value and its
first derivative at the connection point. Finally, add
graph(cos(zu)) to the result to obtain the image of the ini-
tial curve under one complete iteration. Figure 3 illustrates
the procedure. This entire process is then repeated to obtain
further iterates of graph(cos{2)).

The above process produces a sequence of curves that
limits to the synchronization set observed in Fig. 2. There are
two competing factors responsible for the wrinkling. One is

chronization set is typically not differentiable if the averagethe vertical scaling factar, which for|c|<1 tends to reduce
contraction within the synchronization dets determined by the slope of thenth-stage curve. The other is the horizontal

the drive is larger than the contraction transverse tgais
determined by the response wj In particular, lethy be the
most negative past-history Lyapunov expor&of the drive

compression, which tends to increase this slope. Whether or
not the slope at a given point in the limiting set is bounded
depends on the competition between these two opposing fac-

and leth, be the Lyapunov exponent corresponding to thetors. If the horizontal compression is stronger than the verti-

A

—

cos(2mu)

|
[

u FIG. 3. lterative geometric construc-
tion of the synchronization set of Eq.
! (2). () Begin with graph(cos(2u)).
| (b) Two copies of the curve, each
scaled vertically byc and horizontally
by N\ and 1-\ respectively, are joined
atu=\. ¢c=0.3 and\=0.8 are used
for this example.(c) The resulting
curve is then added to
graph(cos(zu)), giving the result
shown (note the vertical scale The
process is then repeated.

Rt o
iR
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a) b)
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-1 from the iterative graph transform pro-
cedure forh =0.8 andc=0.3 (smooth
case. (a) Initial curve; (b) result after
C) d) one iteration;(c) two iterations; (d)
eleven iterations.
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cal compression, the slope will tend to grow, and the curve irorbit. Thus there typically exist invariant sets embedded in
the limiting set will not be differentiable. Figures 4 and 5 the synchronization set on whieh has differing degrees of
illustrate the smooth and the wrinkled cases as sequences & gularity. As we will demonstrate below, there are situations
curves generated by the graph transform procedure. In botihh which nondifferentiability on these smaller sets may be-
sequences, the initial curve and the resultant curves after tteome important. A quantification of this multifractality is
first, second, and eleventh iterations are sho@iovies given in Sec. lll.
showing the development of the synchronization set using The degree of wrinkling is also closely connected to the
the graph transform procedure are available on the 3)eb. concept of “reliable response” in the generation of neuronal
As one can see from these two sequences, the iterated curva@gnals. A system is said to respond reliably to an input if its
approach the actual synchronization set after only a few itresponse is identical each time the input is preser(texk
erations. Note that the curve that is obtained after any finitgerimental evidence for such behavior in neuronal tissue has
number of iterations is differentiableCt), but the limiting  been reported in Ref. 15Consider two trajectories begin-
curve in the wrinkled case is only tber continuous. ning at nearby initial conditions in the drive system. The
The wrinkling of the synchronization manifold islecal ~ orbits of the drive will remain close to each other for a time
feature, and the smoothness in the vicinity of a single orbit~1/h, whereh is the largest Lyapunov exponent of the
depends on the ratio of the exponehtsand hy along this  driver. If the synchronization manifold is approximately

a) b)
1
c 21
= o
o g A
— —
S 1 ¢ 2 T U
= =
= o
= Fs-1 FIG. 5. Sequence of curves resulting
-1 from the iterative graph transform pro-
cedure for A=0.8 and c=0.8
(wrinkled casé (a) Initial curve; (b)
C) d) result after one iteratior(c) two itera-
tions; (d) eleven iterations.
0 g4
g7 £
5 A 85
ﬁ P
=
= VAR = s J u
Q 1 1
>
Q
O L.,
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10 the synchronization set can be visualized as a graph inyhe
/ plane. The result for the current case is shown in Fig. 6. We
0.5 .. .
14 /4 choosec sufficiently close to zero such that numerically, we
0.0
1.0

find |h,/hy|>1 for a typical orbit. This suggests that

o0 o8 grapi¢) is smooth almost everywhere. However, graph
0 is not completely smooth, since “cusps” are formed at points
corresponding to the orbits of=1/2 that are affected by,
i.e., that visit the shaded rectangles of Figa)1Thus, the
\/ main cusp occurs at=\/2. The next largest cusp occurs at
u=Aw(A/2,0). More cusps appear at subsequent iterates,
' ' : but these get progressively smaller in the figure because of

. . 1. ) .
0.0 0.5 u 0 the cumulative effect of the transverse contraction. Note that

the Hdder exponent at each cusp is zeegardlesf c. The

FIG. 6. Cusped case with=0 andc=0.2. The inset shows the shapednf ianifi pf itical . P raeg . ibl .
We setA=0.2 anda=0.3, for whichhy=—0.90 and|hg<|n|. cusps  Significance o cr_ltlca s_ets in genera nonn_wertl e maps in
occur at the forward iterates of the critical pointuat 1/2 and decrease in  0One and higher dimensions has been considered by Mira and
size due to the cumulative effect of the transverse contraction. co-workers(see Ref. 25, and references theyein

In addition, we have found through numerical means
several periodic orbits sufficiently near cusps such that
drive will not affect the response system in significantly dif th'/hd| calculated along the orbit is less than one. We also

P y 9 y expect that there are aperiodic orbits with the same property.

e /e 02000 o hese ot howeve, e 1y depencs on e
y N nany R value ofc, and the size of the set of such points decreases as
the two states of the drive will be amplified in the response

; . the rate of transverse contraction increases.
even for times shorter thanhl/ Thus, a reliable response . . . . ; .
The iterative geometric construction discussed in the
cannot be expected.

previous section applies to the current case with only one
change: the horizontal rescaling is no longer linear, but is
B. Cusps instead specified by for the left “copy” of the previous
The second type of structure that can develop within thestate. A sequence of pictures showing the first few stages in
synchronization set results from the presence of criticathe construction of the synchronization set using the graph
points in the drive. At such a point the Jacobian matrix istransform method is shown in Fig. 7. Beginning again with
singular, and we expect to find orbits ¥ near the critical graph(cos(zu)) as the initial condition, the resulting curve

smooth, then the difference between the two orbits of th

points along which the contraction is arbitrarily large. is seen to begin to resemble the actual synchronization set
We illustrate this situation using the map in Eg) with after only two iterationgcompare Fig. &
s=0. In this case, the contraction rate in thalirection is Although grapli¢) is not smooth in either the cusped or

not uniform. Insteady, which remains invertible, has a criti- the wrinkled case, its global structure in the two cases is
cal (inflection) point atu=1/2, and thus the contraction rate different. The occurrence of wrinkling depends on the
along the lineu=1/2 is infinite. As in the previous example, strength of the contraction rate in the direction transverse to

a) b)
. 1
O
2 £
=] =
@) Q0
= u — u
o 1 2 1
= —
z i
= 1 FIG. 7. lterative geometric construc-
-1 tion of the cusped synchronization set
shown in Fig. 6(a) The initial curve is
d graph(cos(zu)); (b) result after one
C) ) iteration; (c) two iterations;(d) eleven
iterations.
o 3
= 1 < 1
: 5
= =
4o =
u u
g 1 5 1
>
3 (5
UJ_ 1 m 1
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the synchronization set. In particular, gréphis everywhere  a) b)
differentiable forc<min(\,1—\) and is nonsmooth other-
wise. In our second example, the functianhas a critical V4 V4
point atu=1/2 regardless of the value of Hence the driv- . I |
ing system has a critical line, and the infinite contraction in

the vicinity of this line (and its forward iteratgsleads to
cusps in the synchronization set where thdddo exponent I
vanishes. We emphasize that this occursdibvalues ofc, | «—

in contrast to the first example. In addition, we expect in the N | .
cu;ped case thqt there is typlcally al’.’l add|t|qnal sr_nall set ol iy X Y > o), ), X &) (X_Z);

points along which the synchronization set is onlyldiw, : : ¢

and that the size of this set decreases with increasing transtG. 8. The connection between multivalued synchronization sets and non-
verse contraction. invertibility. (a) The statex of the drive has two preimages undras

In Sec. Ill, we introduce statistics which describe theSh.OW_n' Egch preimage is then associated with all possible responseyalues
. . ... this situation is then iterated forward under the full dynanticThe result
differences between these two cases in a more quantitati€yyg typically disjoint sets of values, both associated with the drive state

fashion. x. (b) The same argument considering two steps into the past.

C. Multivalued synchronization sets several possible' states. Multivalued synchronization sets
) ) ) _have been described in Refs. 8 and 17 and observed experi-

In this section we discuss the development of multival-yentally in Ref. 31. A different and less severe form of mul-

ued synchronization sets. Such structures are associated Wi{)ajued synchronization, in which the drive and response are

the presence of noninvertibility in the underlying equations..q|ated by a 1m ratio, has been recently report&®

Noninvertible mathematical models are very important in We now give séveral examples of this phénomenon

nonlinear dynamics, despite the usual assumption that PhySkjrss \ye note that the driver in E€) is noninvertible when

cal processes are fundamentally described by inherently in&) has a negative slope at=1/2, i.e., fors<0. The synchro-

vertible ordinary differential equations. The use of the 10gis-,iation set fors= — 1/2 is iIIusira-lté;j in Fig '9 Note that as

tic map in the study of population dynamics in bioldis a s is progressively decreased from 1 to 0-tdl/2, the syn-

well-known example. More generally, dynamics recon-cp qnisation set goes from being smooth to having cusps; the
structed from measured time series of systems with strongusps then “push through” to form loops. Thus the synchro-

dissipation are frequently best and most usefully aplorOXi'nization set becomes multivalued. An animation of this pro-

mated by noninvertible mag$. Models with time-delays, .occ is available on the wéb

important for describing neuronal and more general biologi- The development of the multivalued synchronization set

cal_pr_ocesses-, are even more co.mpllcate(.j sm.ce a proper 4R this case is particularly clear in terms of the iterative geo-
scription requires delay differential equations; temporal in\peqic construction described above. Beginning again with
Vert'br']“ty n thhese.sys'tems cannoLbe :]aken for g:jaﬁ?edh the graph of cos(2u), the first step in the construction is to

¢ T. € Sﬁnc k:onlzatlo.n set can h? charatljcterlze as the Sglscale this curve vertically byand horizontally by\w. The
0 po;?ts ¢ atf ave preimages within t eTf%Y N SIeps  |atter step can be thought of as occurring in three separate
Into t. e_past or every _pos_mve mteg%r. atis, a |_30|_nt pieces as indicated in Figs. () and 1Q@b); the result is the
(x.y) is in the synchronization set F~"(x.y) stays within formation of the looped curve shown in Fig. (&0 This is

it ; 29,30 H
the_ bOXX_XY for every Pos't"’e integeN. _From this then joined to another copy of the original curve which is
point of view, the connection between the multivalued nature

of a synchronization set and noninvertibility can be under-
stood as follows. A noninvertible drive implies that there are
drive states that have more than one inverse image under
Consider such a drive stateAssociate the set of all possible

y values with each of the preimages xf Typically, these
iterate forward undefF to a disjoint union of sets of-values
associated withk such that each component of this union
corresponds to one preimagexofThis is depicted schemati-
cally in Fig. 8a). The above argument may be repeated using
the set of preimages undtwof drive statex j steps into the
past, forj=2,3,.... This yields a disjoint union of an in- e
creasing number of smaller setsyefalues that is associated : . .

with the drive statex, as shown in Fig. @) for j = 2. Thus,¢ 0.0 0.5 u 1.0

is multivalued. Intuitively, each particulgth preimage o

gives rise to a different orbit that lands arafter j iterates.  FIG. 9. Multivalued “looped” case withs=—0.5 andc=0.3. The upper

: : : : : : e inset shows the shape a@. We setA=0.2 and «=0.3, for which hy
These different trajectoridalso called historigsprovide dif =—0.7 and/hg|<|h,|. The lower inset magnifies the largest loop, in which

ferent driVinQ signals to the response system, an_d thereforgggitional loops, going both inward and outward, are evident. The apparent
once the drive lands oRr, the response can be in any of gaps in the curve are due to finite iteration.
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FIG. 10. Iterative geometric construction of the multivalued synchronization set shown in FEgT8e functionw(u, — 1/2), which is noninvertible, has two
critical points atué and ug as shown. The images of these critical points under the cubic funatierw(u, —1/2) arewg and wg. (b) The initial curve
cos(2mu) in the iterative process. It is useful to consider the horizontal stretching and contraction by the\taetsroccurring in three pieces as shown.
Specifically, the curve in region | maps to the curve starting ftrdm 0 tou’ = wé ; the curve in region Il maps to the U shaped curve in reverse order within
the domainu’ e[ w?,t]; and the curve in region Ill maps to the curve starting frohs ? to u’ =1. The result is shown ifc). To complete one cycle of
the iterative process, the curve resulting from geytis added to graph(cosf2l)), giving the result shown irid). The process is then repeated.

scaled uniformly both vertically and horizontally, and the We now give an example for which the synchronization

result is added to graph(cosf@)). The curve after one full setis multivalued for all drive states, and the structure can be

step of the iterative process is shown in Fig(d)ONote that  understood exactly. Consider the following two-dimensional

in the course of iteration, it is possible to obtain loops withinpiecewise linear system:

loops. This feature is evident in Fig. 9; see the lower inset,

which enlarges the main loop.

Another way to introduce noninvertibility into E¢R) is

to allow the rectangles depicted in Fig. 11 to overlap. Recall

that for s=1, the driver in Eq.2) reduces to the standard Yn+1=9(Xn,Yn,C) =CY¥ntXn+1, 4)

baker's map. Rewriting this system to explicitly account for\yheref is noninvertible with two preimages for eagh, ; .

the overlap, we consider the following system: For |c|<1, the system is asymptotically stable. Figure 12
(N p(l=M)u,, v<a, shows the synchronization set, which consists of a set of

lines. The topology in this case is unusual because the drive

is not continuous; we expect that for the more typical case of

f 2%, X,<0.5,
X1 =) =1 5 05 x.=05,

Upi1= (1_p))\+(1—(1—p))\)un, U=,

U 3) a continuous noninvertible drive-response system, the syn-

2 Un<a, chronization set will be connected. However, we believe that
Uni1= the one-to-many structure illustrated by this example is typi-

Un" . cal of many cases.

1-a’ e The structure of this synchronization set can be under-

stood using a linear transformation of the ful,y) system.

In particular, let ® ¥)'=T(x y)', where
where p e[ 0,1] determines the degree of overlap. Figures
11(a) and 11b) show the synchronization sets that result for T(c)= 1 0
p=0.3 andp=0.8 withc=0.3. —2(1-c)lc (2—c)(1—-c)lc)’

Yn+1=CYp+COS27Up 1),

®
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FIG. 11. The multivalued synchronization sets resulting from(Bpgfor (a)
p=0.3 and(b) p=0.8. In both casex;=0.3.

In the new coordinates, E@¢4) becomes the “skinny” bak-
er's map given by

2%,
2(7(n_ 0'5)1

S‘(n-#l:[

Yn+1=

Under one iteration, the two halves of the unit square ar
mapped into two horizontal rectangles as shown in Fig. 13.
For c<1/2, this map contracts area at a rate given by 2
After n iterations, the original unit square is mapped info 2
horizontal strips of height", and the limiting set of this
process is a Cantor set of lines. The attracting set of the
original map(Fig. 12 is the image of this Cantor set of lines

C¥n,
C’yn+(1_c),

%,=0.5,

%,=0.5.

under the transformatio ~*(c).

1.5-

1.0

0.5+

0.0

e

FIG. 12. The synchronization set of E@) with c=0.35.

Barreto et al.

=1

FIG. 13. The skinny baker's map.

This example also demonstrates how a multivalued syn-
chronization structure is directly related to the history of the
drive. In terms of the thin baker’s map, one particular history
of a drive staté&, can be uniquely described by a sequence
of the symbolsR and L, constructed by listing ah each
time that a preimage lands to the left#1/2, and anR
each time that a preimage lands to the righkef1/2. An
illustration is given in Fig. 14 in which we have drawn the
images of two halves of the unit square as we iterate(&q.
forward twice. At the end of the second iteration, we can
associate different symbol sequences with the points
Xn(1),y(1)) (i=1,...,4), where each such point is located
within a different horizontal strip and all correspond to the
sameX value at timen. A finer resolution of the striated
strips corresponds to additional steps backwards in time,
which in turn corresponds to more symbols in the symbol
sequence. Each point has a distinct infinite symbol sequence.
Using a metric on the space of symbol sequences, one can
also determine the difference between the orbits of any two
striations. Two striations are close together if the most recent
symbols in the sequence are identical.

The case of a noninvertible drive discussed in this sec-
tion may be reduced to the case with an invertible driver at
the expense of replacing the driving system with one that is
more complex. LeQ)=(X,f) be the space of all infinite se-
quences Xg,Xq,...) such thatx;=f(x;, 1) (the inverse limit

=

BN

y
L R
X
—
LR
EX
Xl’l

RL
LL

FIG. 14. Dynamics under the skinny baker’s map of &j. Top left: The
original domain is divided into regiorR andL. Top right: The image oR
and L after one iterate. Bottom: After two iterates, the original region
maps to the regions label®lL andRR, and the original regio. maps to
the regions labeledL andLR.
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spacé. We define arinvertible mapf on Q by f(x,Xy,...) 4+
=(f(Xg),Xg,X1,-..). It iseasy to check that the response sys-
tem in Eq.(1) and the response system in y o ’Jii{l e

x =f(%), "",

I

y'=g(mo(%),Y), (7) 01 |
receive the same input, wherg(X) =X, is the projection of
the sequencé& onto its first coordinate. Therefore, the dy- -21
namics of these response systems is the same in both cases. . . .
The driving system in Eq(7) is invertible, and thus the 0.0 0.5 1.0

graph transform method converges to a single-valued map

(}:Qéy_ The multivalued functionp whose graph is the FIG. 15. A multivalued and wrinkled synchronization set obtained from Eq.
synchronization set in Eq1) can be obtained by projecting @ With A=0.2, «=0.3,5=-08, andc=0.7.

graph(®) onto the first coordinate.

The complexity of the synchronization set becomes apgom the presence of noninvertibility. Thus, we expect that

parent when the topology of this inverse limit spaeis o mytivalued nature of(x) persists for almost all values
analyzed. This space has an extremely complicated structugg .

even in the relatively simple case of unimodal maps of the o
interval®* To get a better description of the synchronizationD- Combinations

set, we briefly outline an extension of the idea of symbol  gjna|ly, we briefly note that the various cases described
sequences introduced in the case of the “skinny” baker'syhoye can coexist. For example, Fig. 15 shows a case that is

map. The construction of systems with invertible drivers onyoth multivalued and wrinkled; this is obtained using E2).
inverse limit spaces will be addressed in more detail elseang setting =0.2, =0.3, s=—0.8, andc=0.7. Further-

where. _ , _ more, since a smooth noninvertible map must have critical
We will describe this method in the case of the tent mapygints, the situations described in Sec. IIB and Sec. 11C
f of the intervall =[0,1] with critical point 1/2, and such ghould be expected to occur together.

that f(1/2)=1. The critical point separates the interval into Animations showing the evolution of the synchroniza-

subintervalsl;=[0,1/2] and 13=[1/2,1]. The preimage of tjon set as botls andc are varied are available on the wéb.
each of these intervals consists of the inter¥alsl 5 and|3,

17 such thatf(13)=f(13)=17 and f(13)=f(15)=13. This
process can be continued to create a tree of intervals sudH- QUANTIFICATION
that a pair of intervals on then(t+ 1)-st level of the tree maps Here we present two methods for quantifying the fea-

to an interval in thenth level of the tree. tures of the synchronization set that we have described
If the mapf defines the driving map of the system in EQ. gpgve.

(1), the graph transform method can be performed on infinite
paths starting at any nodé, in this tree of intervals. The A €max—0test
method converges to a functiofiy,:17'—Y over the first Most practical methods of detecting nonlinear synchrony
interval in such a path. The graphs of these functions are naet data rely strongly on the continuity @f, and in general
invariant themselves, however, under the dynamics of Edalso require a certain degree of smoothnesgdf’ These
(1), graph(,,) maps into graphbﬂq_,l) whenf(l ”m)=lnm_,l, methods generally proceed by checking if clusters of points
and thus the familfgraph(@,") }n.m is an invariant family of ~ in X correspond to similarly small clusters of points¥n It
graphs. Moreover the graphs in this family are joined ovelis important to note that the presence of the intrinsic geomet-
the points in the history of the critical point 1/2, i.e., over theric features that we have discussed above can significantly
pointsk/2". hinder the experimental detection of more complicaiaud

This idea can be extended to describe the invariant sefserhaps more interestingynchronous relationships.
over more complicated driving systems. In the case of Eq. Consider the following numerical test based on the defi-
(2), we again obtain a family of graphs which are joined overnition of continuity. lterate the system of interdstg., Eq.
the orbits of the critical points. If the map of the driving (1)] for a sufficiently long time to allow transients to die out.
system is smooth, we again encounter the problems disRick a point(x,y) on the attractor and a small numh&rand
cussed in Sec. II B, since the contraction becomes very largiéerate the full system until the-component of the trajectory
close to the orbits of the critical points. Thus, smoothness ofands in the balB,(5) a large number of times. Keep track
the graphs in the invariant family cannot be expected at angf these points, and let,,,, denote the largest distance be-
orbit that is close to the orbit of the critical point over suffi- tween the corresponding-components. If¢ is differen-
ciently many iterates. tiable, then typicallye,,—0 linearly asé—0. When|hy|

We conclude this section by stressing that the multival-=>|h,|, the function¢ is typically only Hdder continuous,
ued structure of the synchronization set for all these cases &nde,,,—0 sublinearly asd decreases. The Hier exponent
an intrinsic feature of the underlying dynamics resultingof ¢ at x can be estimated from the slope of the graph of
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FIG. 16. Graphs of In{,,) versus
-84 -104 In(é) for Eq. (2). In each case, several
r T T T T T T T T T curves are shown, corresponding to
-10 -8 -6 -4 -2 © -10 -8 -6 -4 -2 several randomly chosen fiducial
(@) In(5) In(8) points in the driver. The thick line has
21 slope 1. The graphs correspond (&
21 the smooth case in Fig.(@; (b) the
j 04 wrinkled case in Fig. @); (c) the
0- cusped case in Fig. 6; arid) the mul-
. ";Eé 2] tivalued (looped case in Fig. 9.
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In(emay)-IN 6, and to probe the overall smoothness of the synB. Wavelets
chronization set, an ensemble of scaling curves with ran-  aq shown in Sec. A, the Hder exponent of¢ at a

domly chosen fiducial points can be studied. _ ~ pointx depends on the ratio of two contraction rates, and can
Figures 162)-16(d) show the results of applying this iyerefore vary from point to point. This is characteristic of a
process to the various cases cons_ldered ab‘?"e- First, ConS'qﬁDItifractal set. In this section we use the wavelet methods
the_ smooth_/wrmkled transition d|scuss_ed in Sec. llA, N jescribed in Ref. 35 as a more accurate way to examine the
whichs=1 in Eq.(2). When|hg|<|h|, ¢ is smooth almost regularity of multifractal synchronization sets. In particular,
everywhere_, and the Iggs,)—In 5 curves have slope 1, as we are interested in estimating the typicalltter exponents,
shown in Fig. 163). In contrast, wherjhg|>|h;|, the syn- i.e., those that occur on some set of full measure, as well as

chromza_tlon set is only Hder continuous an.d thug is not the distribution of other, nontypical exponents. The details of
differentiable almost everywhere. The scaling curves there; . ) ) ) :

LT . this method are briefly discussed in the Appendix, and the
fore have smaller slopes, as shown in Fig(kd6For this

case, synchronization detection methods may not be able {gterested reader is referred to the literature on the estimation

detect synchronization at all, even in the absence of noise.Of, the regularity of functions using wavelet techniqdes’

In the cusped case, cusps of decreasing size occur gﬂnce the functionp(u,v) obtained from Eq(2) is constant

(and nearforward iterates ofi=1/2 for allc. However, the " the v direction, we will keepv constant in our analysis

synchronization set may be otherwise smooth, depending gid treai as a function from the real line to itself.
c. Thus, the Iné,.,)—In & graphs show a variety of slopes ~ 1he wavelet transform may be thought of as a space-
depending on the location of the fiducial poixt see Fig. localized counterpart of the Fourier transform. The Fourier

16(c). While most curves have slope 1, a few have smalletransform decomposes a function into sinusoidal components
slopes. In this case, standard synchrony detection metho®$ varying frequency, which are not localized in space. In

fail to detect the presence of the cusps. contrast, the wavelet transform decomposes a signal into a
Figure 16d) demonstrates the effect of the multivalued family of wavelets of varying location and siz& ((u
structure of Eq.(4) (Fig. 12 on the Ing,,)—Ind graphs.  —b)/a). All the wavelets in such a family are obtained from

These are seen to saturate at a scale that corresponds to ¢hgingle function¥(u), which is shifted byb and dilated by
“thickness” of the synchronization set. As a consequence@ factora. The “mother wavelet"¥ (u) is typically chosen

the ability to predict the state of the response system fronto be localized in space, so that we can think of the wavelet
the state of the drive is severely affected, and this situatiofransform as a microscope magnifying an area araunad
cannot be improved by increasing the precision of the meaby a factora.

surements. Although there is a dynamically coherent rela- A smooth function looks nearly constant after sufficient
tionship between the driver and the respofisefact, the  magnification, and hence the coefficients of the wavelets
system is asymptotically stabemost synchronization detec- needed to describe such a function at small scales are van-
tion methods will fail to detect any synchronous relationshipishingly small. On the other hand, cusps or wrinkles persist
in such multivalued cases. under magnification, and hence wavelets of all sizes are
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0 - 1 FIG. 17. The wavelet transform of the

wrinkled ¢ discussed in Sec. Il A. The

middle figure represents the wavelet

coefficients at different scales. The

light regions correspond to large

wavelet coefficients. Wavelet coeffi-
cients fora= 2'? are plotted in the bot-
tom figure. Note that the self-
similarity of the graph is reflected in
the wavelet coefficients. We have used
Matlab routines from the package
WavelLab in the analysis presented in
Figs. 17-20.

Coefficients

needed to describe a function around such points. It can beoint3%3¢Unlike the Fourier transform, which can be used to
shown that, for appropriately chosen wavelets, the wavelegive general information about the roughness of a function,
coefficients scale as this fact allows us to use wavelets to estimate the local
Wy (Ug,a) ~aho) roughness_of a funct!on. o _
These ideas are illustrated in Figs. 17 and 18. In Fig. 17
at a pointug, wherea is the scaling factor of the wavelet and we have chosen the wrinkled synchronization set discussed
h(ug) is the Hdder exponent of the function at that in Sec. Il A. The white regions show regions of high wavelet

0 0.5 1

FIG. 18. The wavelet transform of the
cusped¢ discussed in Sec. Il B. The
graphs are the same as in Fig. 17.
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FIG. 19. The typical smoothness of
the synchronization manifold as a
function of the coupling strengtic.
The solid line is obtained from the the-
oretical prediction, while the dashed
line is obtained from the wavelet
transform. For any finite resolution
level, the wavelet method provides an
upper bound fory, which is consistent
with the observed numerical overesti-
mate.

0
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Cc

coefficients. Note that the graph of the wavelet coefficientghe typical past-history Lyapunov exponent in the contracting
reveals the self-similar structure of the graph. The waveletlirection is given by
coefficients computed for the cusped case of Sec. IIB are
shown in Fig. 18. In this case, the cusps are distributed very hy=aIn\+(1—a)In(1—\)<O0, (8)
sparsely, but occur at many different scales.

Returning to the wrinkled case of Sec. Il A, in which and the response Lyapunov exponett,is In c.X® Therefore,
settings=1 in Eq. (2) reduces the drive to the baker’s map, the typical Hdder exponenty, of the synchronization set is

FIG. 20. The function®(y) for the
wrinkled case withc=0.7, «=0.7,
and A=0.8 (solid line), and for the
cusped case witb=0.2, «=0.3, and
A=0.2 (dashed ling In the wrinkled
case y,mn~0.2 is predicted correctly.
In the cusped case due to the sparsity
of cusps, it is difficult to compute
Dy(y) numerically for small Héer
exponents.

o
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T
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*
it
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v
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Inc tical implications are not pathological: asymmetry and
Yt:aln)\Jr(l—a)In(l—)\)' ©) noninvertibility are typical in many biological and physical
systems.

In Fig. 19, y; computed numerically as a function ofis
compared with the results obtained analytically from &). = ACKNOWLEDGMENTS
The smallestlargesj Holder exponent on the synchro-
nization set corresponds to points whose orbits lie entirely iQion
the part of the square which is more contract{less con-
tracting. Therefore, we obtainymi,=INc/In\ and ymax
=Inc/In(1—X\) if A>1/2. The Hdder exponents ofp there-
fore range fromy,i, 10 vmax, @and are equal te, on a set of
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full measure.
We introduce the dimensio®(y) of the set of all APPENDIX: WAVELET FORMALISM
points in the domain off at which ¢ is Holder with expo- In recent years much research has been devoted to the

nent y. Since Dy (Ymin)=Dr(¥mad=0 andDy(y)=1, this  stydy of the multifractal properties of singular measures. It
function varies between 0 and 1. As explained in the Appennas been observed that many fractal measures appearing in
dix, wavelets provide a natural way of computibg,(y) as  practice scale differently at different points. Thus if we con-

a function ofy. The functionDy(y), frequently called the gjger a measur@ on a spaceX and ballsB,(e) of radiuse

singularity spectruni(a), is expected to have a characteris- centered ax, and define theingularity strengtiof the mea-
tic N shape, hitting zero aymi, and yma, and attaining a  gyre atx by a(x) where

maximum aty;. The y, in Fig. 19 were obtained by com-

puting Dy(y) numerically for eachc, and finding the p(By(€))~ e,
maxima_. _ . then it is frequently observed that(x) is not constant.
In Fig. 20 we show théy(y) functions for a wrinkled To characterize the size of the sets over whidlx) is

and a cusped synchronization set. Note that the peak @fonstant one may cover the entire supporj.ofith balls of
Du(7) in the cusped case is to the right of 1, showing thatradiuse and letN,(€) be the number of balls that scale like
the function is differentiable on a set of Hausdorff dimensione« for a given value ofr. The Hausdorff dimensiofi( ) of
1. The function corresponding to the wrinkled case showshe set on whicha(x)=«a is then obtained by examining
that the ¢ is only Hdder continuous on a set of Hausdorff how N _(¢) scales ag—0", i.e.,
dimension 1. —f(a)
The wavelet analysis of signals presented here provides No~e ' (A1)
a computationally robust estimation procedure, and is more  As noted in Ref. 35, instead of a measwewe may
systematic than the method described in the previous sectiogonsider a functiofr and define the strength of a singularity
Moreover, the graphical display of the singularity spectrumof F at a pointx by
is an interpretable way of quantifying the irregularities of the e
signal. Using these methods it is possible to make statistical [F(Bx(€))|~e™,
distinctions between different signals. This idea has beewnhere|-| is used to denote the size of a set. As discussed in
successfully used to distinguish between signals in biomediprevious sectionsy(x) is exactly the Haer exponenty(x)
cal applications’ of the functionF at the pointx and we may think of («) as
the Hausdorff dimensioB () of the set of points at which
F is Holder with exponent exactly. It follows that the ther-
modynamic formalism that has been introduced to describe
the statistical properties of singular measures, and extended
In summary, we have shown that for coupled systemgo the case of functions in Ref. 38, can be applied directly to
without symmetries, systems can be coherent without havingie present problert.
easily-detectable synchronization properties. We have given Arneodoet al. have introduced a wavelet based method
examples of invertible and noninvertible drivers for which to numerically estimatd®(y).* It can be shown that the
the system is asymptotically stable, yet the synchronizationvavelet transform
set is nonsmooth or multivalued. We have given an example o
of a test for synchrony which incorporates features of most Wq,[F](b,a)=1/afiw‘lf((x—b)/a)F(x)dx
standard tests. We illustrate the misleading nature of the ou%— . . .
come of this testand most standard testshen it is applied or a wavelet¥ that is orthogonal to linear functions scales
to synchronization sets containing the complicated feature®®
of our examples. Furthermore, we give a sophisticated Wy (Xg,a) ~ant*o)
method of detection designed for multifractal synchroniza-in the limit a—0".%° (In the preceding, the overbar denotes
tion sets. These coherent yet complicated structures miglttomplex conjugation.This means that ideally one could de-
affect the generation of “reliable response” in neuronal path-termine the Htger regularity of a function at a point, by
ways within actual biological systems. In conclusion, we em-computing the exponential decay rate of its wavelet coeffi-
phasize that complicated synchronization sets and their pracients.

IV. CONCLUSION
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