
CHAOS VOLUME 13, NUMBER 1 MARCH 2003
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Department of Mathematics and Statistics and the Center for BioDynamics, Boston University,
Boston, Massachusetts 02215

Carlos J. Morales
Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215

Evelyn Sander
Department of Mathematical Sciences, George Mason University, Fairfax, Virginia 22030

Paul So
Department of Physics and Astronomy and the Krasnow Institute for Advanced Study,
George Mason University, Fairfax, Virginia 22030

~Received 16 April 2002; accepted 16 August 2002; published 21 February 2003!

Chaos synchronization in coupled systems is often characterized by a mapf between the states of
the components. In noninvertible systems, or in systems without inherent symmetries, the
synchronization set—by which we mean graph~f!—can be extremely complicated. We identify,
describe, and give examples of several different complications that can arise, and we link each to
inherent properties of the underlying dynamics. In brief, synchronization sets can in general become
nondifferentiable, and in the more severe case of noninvertible dynamics, they might even be
multivalued. We suggest two different ways to quantify these features, and we discuss possible
failures in detecting chaos synchrony using standard continuity-based methods when these features
are present. ©2003 American Institute of Physics.@DOI: 10.1063/1.1512927#
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Since the surprising discovery that chaotic systems can
synchronize,1,2 many different kinds of nonlinear syn-
chrony have been considered in the literature.3 We focus
here on the geometry of synchronization structures that
arise in such systems and point out several complicating
factors that are not generally appreciated. These more
complicated states may arise in noninvertible systems, in
systems with critical points, and in systems of signifi-
cantly dissimilar nonlinear elements. An important case
is that of neuronal systems, which consist of many very
different interacting classes of neurons, each of which ex
hibit great variation in their morphology. Nontrivial syn-
chronous relationships in such systems may have phys
ological significance, and may even correspond to
perceptual events.4 We identify several different geomet-
ric features that can arise in these more complicated situ-
ations, giving several examples and providing an intuitive
explanation for each case. A good understanding of thes
inherent mathematical features is important for the
proper interpretation of experimental data, especially in
situations in which the detection and classification of such
synchronous states is of interest. In particular, we find
that most existing methods for detecting synchrony5–7

will be hampered by the inherent geometric features that
we identify.8

a!Web site: http://complex.gmu.edu
1511054-1500/2003/13(1)/151/14/$20.00
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I. INTRODUCTION

In this work we consider a general drive/response sys
F:X3Y→X3Y, where (xn11 ,yn11)5F(xn ,yn) and is of
the form,

xn115f~xn!,

yn115g~xn ,yn ,c!. ~1!

The drivexPX and the responseyPY are state vectors,X
andY are compact finite dimensional spaces, and bothf and
g are smooth or piecewise smooth maps. The parametc
characterizes the coupling or interaction strength. We exp
that many of our observations hold in the case of bidirecti
ally coupled systems.9,10 Unidirectionally coupled flows may
be reduced to this form via a Poincare´ or time-T map.

Generalized synchrony2,7 is a useful concept in the
analysis of coupled nonlinear systems, and is usually defi
by the existence of a smooth, continuous map between
phase spacesX andY of the two component systems. For o
purposes, we will be concerned with the mapf:X→Y which
associates astateof the first system with astateof the sec-
ond such that graph~f! is invariant and attracting under th
evolution of the coupled system.11 Throughout this work, we
will refer to the synchronization set, by which we mean
graph~f!.12 If the underlying dynamical equations have i
herent symmetry, graph~f! typically has a simple structure
For example, in the frequently studied case of couplediden-
tical oscillators, thex5y symmetry plane is invariant. In this
© 2003 American Institute of Physics
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case, when the components are synchronized, trajectorie
attracted to the plane of symmetry, and the synchroniza
set is trivial.

The continuity and smoothness off are important con-
siderations, especially with regard to the practical detec
of nonlinear synchronous states in experimentally obtai
data. The existence of such states has been demonstra
both physical13 and biological systems.6 However, we illus-
trate below that many systems of current interest exhibit s
chronization sets with geometric complications that can h
a detrimental effect on the detection of nonlinear synchro
from measured data. In particular, noninvertible coupled s
tems and systems lacking intrinsic symmetries can exh
synchronization sets with very complicated structures. Si
mismatches among coupled components are unavoidab
indeed heterogeneous coupled systems are of more ge
interest, especially when considering biological systems
good understanding of the geometry of the synchroniza
sets of these more general systems is needed.

A closely related concept isasymptotic stability.14 A uni-
directionally coupled system is asymptotically stable if tw
~or more! identical copies of the response synchron
when subjected to the same driving signal. More precis
for any two initial conditions (x0 ,y08),(x0 ,y09)PX3Y which
share the same initial drive statex0 , we have
limn→`iyn(x0 ,y08 ;c)2yn(x0 ,y09 ;c)i50, whereyn(x0 ,y0 ;c)
is the y coordinate of thenth iterate of (x0 ,y0) under the
dynamics of the full system, andc is the coupling between
the driver and response systems. This is similar to the ide
‘‘reliable response’’ in the generation of neuronal signals15

Asymptotic stability and generalized synchrony are equi
lent if the driving system isinvertible and has a compac
attractor.16 We have observed, however, that it is possible
have asymptotic stability in systems which are noninvertib
for which graph~f! is not even single-valued.17

In this paper we propose a categorization of the str
tures which arise in such synchronization states, and
these structures to specific features of the underlying dyn
ics. In Sec. II we describe and illustrate these categories
ing a general driver/response dynamical system. In Sec.
two methods of quantifying these structures is presented,
we review the implications of these structures for the pra
cal detection of synchronization from measured data. C
cluding remarks appear in Sec. IV.

II. CATEGORIZATION

It is convenient to use a specific form of Eq.~1! to illus-
trate the various cases of interest. In the following, we ta
the driving system to be a modified baker’s map and us
simple filter of one of the driver variables for the respon
Specifically,

un115H lv~un ,s!, vn,a,

l1~12l!un, vn>a,

vn115H vn /a, vn,a,

~vn2a!/~12a!, vn>a,
~2!

yn115cyn1cos~2pun11!,
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where 0,l,1 and 0,a,1. The driver, by which we mean
the (u,v) subsystem, maps the unit square into itself as
lustrated in Fig. 1~a!. The functionv(u,s) is a cubic poly-
nomial in u defined by the following conditions:v(0,s)
50; v(1,s)51; v(1/2,s)51/2, and ]v/]u(1/2,s)5s,
where 21<s<1. This function, graphed in Fig. 1~b! for
various values of the parameters, determines how the are
within the lower rectangle of Fig. 1~a! is redistributed hori-
zontally on each iterate. The responsey is a filter of the
drive’s variableu with c controlling the transverse contrac
tion rate. The parameterc, although technically not a cou
pling parameter in Eq.~2!, is meant to model the more gen
eral case in which the dominant dynamical effect of coupl
is to alter the contraction rate transverse to the synchron
tion set. One should also note that the limit atc50 is some-
times singular. In particular, nontrivial synchronous stru
tures such as cusps and multivalued sets described in
next section will persist for all values ofc except atc50. At
c50, the synchronization set collapses to the curvey
5cos(2pu). Below, we varys and c to obtain various syn-
chronization sets with nontrivial geometric structures. In p
ticular, we will be concerned with the mapy5f(x) which
associates astate of the drive system with astate of the
response such that graph~f! is invariant and attracting unde
the evolution of the coupled system.

A. Wrinkling

The first type of nontrivial structure is best illustrate
with s51, so thatv(u,s)51 and the drive reduces to th
standard baker’s map. Referring to Fig. 1~a!, this corre-
sponds to uniform horizontal contraction and vertical stret
ing of the shaded rectangle. This case has been studie
Refs. 18 and 19, and we include it here for completenes

If, in Eq. ~2!, ucu,1, the response is asymptotical
stable for allx. As pointed out in Refs. 18 and 19, the sy

FIG. 1. ~a! The modified generalized baker’s map used as the driver in
~2!. The functionv(u,s) determines how the area of the lower rectangle
~a! is stretched and contracted horizontally, as schematically depicted b
shading.~b! Plot showingv for three values of the parameters.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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153Chaos, Vol. 13, No. 1, 2003 The geometry of chaos synchronization
chronization set is typically not differentiable if the avera
contraction within the synchronization set~as determined by
the drive! is larger than the contraction transverse to it~as
determined by the response viac). In particular, lethd be the
most negative past-history Lyapunov exponent20 of the drive
and lethr be the Lyapunov exponent corresponding to

FIG. 2. Plots of the synchronization set of Eq.~2!. The insets show the
function v. We sets51, l50.8, anda50.7, for whichhd520.64. Note
that hr5 ln c. ~a! Smooth case;c50.3 anduhdu,uhr u; ~b! wrinkled case;c
50.8 anduhdu.uhr u. The curve in~b! is Hölder continuous with exponen
uhr /hdu;0.35.
Downloaded 02 Jun 2003 to 129.174.150.51. Redistribution subject to AI
e

transverse contracting direction. Ifuhr u,uhdu, thenf is gen-
erally not differentiable, but is only Ho¨lder continuous with
Hölder exponent21 equal touhr /hdu,1 at typical points.

Since the attractor of the generalized baker’s map is u
form in v, the synchronization set can be accurately visu
ized in theuy plane. Graphs demonstrating both the diffe
entiable and nondifferentiable cases are given in Figs. 2~a!
and 2~b!, respectively. We call the development of nondiffe
entiability in this fashion ‘‘wrinkling.’’

One can gain intuition about the wrinkling process
considering the following iterative geometric construction
the synchronization set. This construction is the essenc
the graph transform method used first by Hadamard and l
by a number of mathematicians to prove the existence
invariant manifolds.22,23Begin with the graph of cos(2pu) in
the unit interval.~The choice of the initial curve is not im
portant; any smooth curve with appropriate boundary con
tions may be used.! Next, join two copies of the initial curve
at u5l, each scaled vertically byc and horizontally byl
and 12l, respectively. Note that since the initial curve
periodic in the interval and its first derivative is zero at bo
ends, the combined curve is continuous in its value and
first derivative at the connection point. Finally, ad
graph(cos(2pu)) to the result to obtain the image of the in
tial curve under one complete iteration. Figure 3 illustra
the procedure. This entire process is then repeated to ob
further iterates of graph(cos(2pu)).

The above process produces a sequence of curves
limits to the synchronization set observed in Fig. 2. There
two competing factors responsible for the wrinkling. One
the vertical scaling factorc, which for ucu,1 tends to reduce
the slope of thenth-stage curve. The other is the horizont
compression, which tends to increase this slope. Whethe
not the slope at a given point in the limiting set is bound
depends on the competition between these two opposing
tors. If the horizontal compression is stronger than the ve
-
.

FIG. 3. Iterative geometric construc
tion of the synchronization set of Eq
~2!. ~a! Begin with graph(cos(2pu)).
~b! Two copies of the curve, each
scaled vertically byc and horizontally
by l and 12l respectively, are joined
at u5l. c50.3 andl50.8 are used
for this example. ~c! The resulting
curve is then added to
graph(cos(2pu)), giving the result
shown ~note the vertical scale!. The
process is then repeated.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 4. Sequence of curves resultin
from the iterative graph transform pro
cedure forl50.8 andc50.3 ~smooth
case!. ~a! Initial curve; ~b! result after
one iteration; ~c! two iterations; ~d!
eleven iterations.
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cal compression, the slope will tend to grow, and the curve
the limiting set will not be differentiable. Figures 4 and
illustrate the smooth and the wrinkled cases as sequenc
curves generated by the graph transform procedure. In
sequences, the initial curve and the resultant curves afte
first, second, and eleventh iterations are shown.~Movies
showing the development of the synchronization set us
the graph transform procedure are available on the web24!
As one can see from these two sequences, the iterated c
approach the actual synchronization set after only a few
erations. Note that the curve that is obtained after any fi
number of iterations is differentiable (C1), but the limiting
curve in the wrinkled case is only Ho¨lder continuous.

The wrinkling of the synchronization manifold is alocal
feature, and the smoothness in the vicinity of a single o
depends on the ratio of the exponentshr and hd along this
Downloaded 02 Jun 2003 to 129.174.150.51. Redistribution subject to AI
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orbit. Thus there typically exist invariant sets embedded
the synchronization set on whichf has differing degrees o
regularity. As we will demonstrate below, there are situatio
in which nondifferentiability on these smaller sets may b
come important. A quantification of this multifractality i
given in Sec. III.

The degree of wrinkling is also closely connected to t
concept of ‘‘reliable response’’ in the generation of neuron
signals. A system is said to respond reliably to an input if
response is identical each time the input is presented.~Ex-
perimental evidence for such behavior in neuronal tissue
been reported in Ref. 15.! Consider two trajectories begin
ning at nearby initial conditions in the drive system. T
orbits of the drive will remain close to each other for a tim
t'1/h, where h is the largest Lyapunov exponent of th
driver. If the synchronization manifold is approximate
g
-

FIG. 5. Sequence of curves resultin
from the iterative graph transform pro
cedure for l50.8 and c50.8
~wrinkled case!. ~a! Initial curve; ~b!
result after one iteration;~c! two itera-
tions; ~d! eleven iterations.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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155Chaos, Vol. 13, No. 1, 2003 The geometry of chaos synchronization
smooth, then the difference between the two orbits of
drive will not affect the response system in significantly d
ferent ways during this time. However, if the synchronizati
set is severely wrinkled, then any small difference betwe
the two states of the drive will be amplified in the respon
even for times shorter than 1/h. Thus, a reliable respons
cannot be expected.

B. Cusps

The second type of structure that can develop within
synchronization set results from the presence of crit
points in the drive. At such a point the Jacobian matrix
singular, and we expect to find orbits inX near the critical
points along which the contraction is arbitrarily large.

We illustrate this situation using the map in Eq.~2! with
s50. In this case, the contraction rate in theu direction is
not uniform. Instead,v, which remains invertible, has a crit
cal ~inflection! point atu51/2, and thus the contraction ra
along the lineu51/2 is infinite. As in the previous example

FIG. 6. Cusped case withs50 andc50.2. The inset shows the shape ofv.
We setl50.2 anda50.3, for which hd520.90 anduhdu,uhr u. Cusps
occur at the forward iterates of the critical point atu51/2 and decrease in
size due to the cumulative effect of the transverse contraction.
Downloaded 02 Jun 2003 to 129.174.150.51. Redistribution subject to AI
e

n
,

e
l

s

the synchronization set can be visualized as a graph in theuy
plane. The result for the current case is shown in Fig. 6.
choosec sufficiently close to zero such that numerically, w
find uhr /hdu.1 for a typical orbit. This suggests tha
graph~f! is smooth almost everywhere. However, graph~f!
is not completely smooth, since ‘‘cusps’’ are formed at poin
corresponding to the orbits ofu51/2 that are affected byv,
i.e., that visit the shaded rectangles of Fig. 1~a!. Thus, the
main cusp occurs atu5l/2. The next largest cusp occurs
u5lv(l/2,0). More cusps appear at subsequent itera
but these get progressively smaller in the figure becaus
the cumulative effect of the transverse contraction. Note t
the Hölder exponent at each cusp is zeroregardlessof c. The
significance of critical sets in general noninvertible maps
one and higher dimensions has been considered by Mira
co-workers~see Ref. 25, and references therein!.

In addition, we have found through numerical mea
several periodic orbits sufficiently near cusps such t
uhr /hdu calculated along the orbit is less than one. We a
expect that there are aperiodic orbits with the same prope
For these orbits, however, the ratiouhr /hdu depends on the
value ofc, and the size of the set of such points decrease
the rate of transverse contraction increases.

The iterative geometric construction discussed in
previous section applies to the current case with only o
change: the horizontal rescaling is no longer linear, bu
instead specified bylv for the left ‘‘copy’’ of the previous
state. A sequence of pictures showing the first few stage
the construction of the synchronization set using the gr
transform method is shown in Fig. 7. Beginning again w
graph(cos(2pu)) as the initial condition, the resulting curv
is seen to begin to resemble the actual synchronization
after only two iterations~compare Fig. 6!.

Although graph~f! is not smooth in either the cusped o
the wrinkled case, its global structure in the two cases
different. The occurrence of wrinkling depends on t
strength of the contraction rate in the direction transverse
-
t

FIG. 7. Iterative geometric construc
tion of the cusped synchronization se
shown in Fig. 6.~a! The initial curve is
graph(cos(2pu)); ~b! result after one
iteration; ~c! two iterations;~d! eleven
iterations.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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the synchronization set. In particular, graph~f! is everywhere
differentiable forc,min(l,12l) and is nonsmooth other
wise. In our second example, the functionv has a critical
point atu51/2 regardless of the value ofc. Hence the driv-
ing system has a critical line, and the infinite contraction
the vicinity of this line ~and its forward iterates! leads to
cusps in the synchronization set where the Ho¨lder exponent
vanishes. We emphasize that this occurs forall values ofc,
in contrast to the first example. In addition, we expect in
cusped case that there is typically an additional small se
points along which the synchronization set is only Ho¨lder,
and that the size of this set decreases with increasing tr
verse contraction.

In Sec. III, we introduce statistics which describe t
differences between these two cases in a more quantita
fashion.

C. Multivalued synchronization sets

In this section we discuss the development of multiv
ued synchronization sets. Such structures are associated
the presence of noninvertibility in the underlying equatio
Noninvertible mathematical models are very important
nonlinear dynamics, despite the usual assumption that ph
cal processes are fundamentally described by inherently
vertible ordinary differential equations. The use of the log
tic map in the study of population dynamics in biology26 is a
well-known example. More generally, dynamics reco
structed from measured time series of systems with str
dissipation are frequently best and most usefully appro
mated by noninvertible maps.27 Models with time-delays,
important for describing neuronal and more general biolo
cal processes, are even more complicated since a prope
scription requires delay differential equations; temporal
vertibility in these systems cannot be taken for granted.28

The synchronization set can be characterized as the
of points that have preimages within the boxX3Y N steps
into the past for every positive integerN. That is, a point
(x,y) is in the synchronization set ifF2N(x,y) stays within
the box X3Y for every positive integerN.29,30 From this
point of view, the connection between the multivalued nat
of a synchronization set and noninvertibility can be und
stood as follows. A noninvertible drive implies that there a
drive states that have more than one inverse image undf.
Consider such a drive statex. Associate the set of all possibl
y values with each of the preimages ofx. Typically, these
iterate forward underF to a disjoint union of sets ofy-values
associated withx such that each component of this unio
corresponds to one preimage ofx. This is depicted schemati
cally in Fig. 8~a!. The above argument may be repeated us
the set of preimages underf of drive statex j steps into the
past, for j 52,3,. . . . This yields a disjoint union of an in
creasing number of smaller sets ofy-values that is associate
with the drive statex, as shown in Fig. 8~b! for j 52. Thus,f
is multivalued. Intuitively, each particularj th preimage ofx
gives rise to a different orbit that lands onx after j iterates.
These different trajectories~also called histories! provide dif-
ferent driving signals to the response system, and there
once the drive lands onx, the response can be in any
Downloaded 02 Jun 2003 to 129.174.150.51. Redistribution subject to AI
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several possible states. Multivalued synchronization s
have been described in Refs. 8 and 17 and observed ex
mentally in Ref. 31. A different and less severe form of m
tivalued synchronization, in which the drive and response
related by a 1:m ratio, has been recently reported.32,33

We now give several examples of this phenomen
First, we note that the driver in Eq.~2! is noninvertible when
v has a negative slope atu51/2, i.e., fors,0. The synchro-
nization set fors521/2 is illustrated in Fig. 9. Note that a
s is progressively decreased from 1 to 0 to21/2, the syn-
chronization set goes from being smooth to having cusps;
cusps then ‘‘push through’’ to form loops. Thus the synch
nization set becomes multivalued. An animation of this p
cess is available on the web.24

The development of the multivalued synchronization
in this case is particularly clear in terms of the iterative ge
metric construction described above. Beginning again w
the graph of cos(2pu), the first step in the construction is t
rescale this curve vertically byc and horizontally bylv. The
latter step can be thought of as occurring in three sepa
pieces as indicated in Figs. 10~a! and 10~b!; the result is the
formation of the looped curve shown in Fig. 10~c!. This is
then joined to another copy of the original curve which

FIG. 8. The connection between multivalued synchronization sets and
invertibility. ~a! The statex of the drive has two preimages underf as
shown. Each preimage is then associated with all possible response valuy;
this situation is then iterated forward under the full dynamicsF. The result
is two typically disjoint sets ofy values, both associated with the drive sta
x. ~b! The same argument considering two steps into the past.

FIG. 9. Multivalued ‘‘looped’’ case withs520.5 andc50.3. The upper
inset shows the shape ofv. We set l50.2 and a50.3, for which hd

520.7 anduhdu,uhr u. The lower inset magnifies the largest loop, in whic
additional loops, going both inward and outward, are evident. The appa
gaps in the curve are due to finite iteration.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 10. Iterative geometric construction of the multivalued synchronization set shown in Fig. 9.~a! The functionv(u,21/2), which is noninvertible, has two
critical points atuc

1 and uc
2 as shown. The images of these critical points under the cubic functionu85v(u,21/2) arevc

1 and vc
2 . ~b! The initial curve

cos(2pu) in the iterative process. It is useful to consider the horizontal stretching and contraction by the factorlv as occurring in three pieces as show
Specifically, the curve in region I maps to the curve starting fromu850 to u85vc

1 ; the curve in region II maps to the U shaped curve in reverse order wi
the domainu8P@vc

2 ,vc
1#; and the curve in region III maps to the curve starting fromu85vc

2 to u851. The result is shown in~c!. To complete one cycle of
the iterative process, the curve resulting from part~c! is added to graph(cos(2pu)), giving the result shown in~d!. The process is then repeated.
e
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hat
pi-

er-
scaled uniformly both vertically and horizontally, and th
result is added to graph(cos(2pu)). The curve after one full
step of the iterative process is shown in Fig. 10~d!. Note that
in the course of iteration, it is possible to obtain loops with
loops. This feature is evident in Fig. 9; see the lower ins
which enlarges the main loop.

Another way to introduce noninvertibility into Eq.~2! is
to allow the rectangles depicted in Fig. 11 to overlap. Re
that for s51, the driver in Eq.~2! reduces to the standar
baker’s map. Rewriting this system to explicitly account f
the overlap, we consider the following system:

un115H ~l1r~12l!!un, vn,a,

~12r!l1~12~12r!l!un, vn>a,
~3!

vn115H vn

a
, vn,a,

vn2a

12a
, vn>a,

yn115cyn1cos~2pun11!,

where rP@0,1# determines the degree of overlap. Figur
11~a! and 11~b! show the synchronization sets that result
r50.3 andr50.8 with c50.3.
Downloaded 02 Jun 2003 to 129.174.150.51. Redistribution subject to AI
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We now give an example for which the synchronizati
set is multivalued for all drive states, and the structure can
understood exactly. Consider the following two-dimension
piecewise linear system:

xn115 f ~xn!5H 2xn, xn,0.5,

2~xn20.5!, xn>0.5,

yn115g~xn ,yn ,c!5cyn1xn11 , ~4!

where f is noninvertible with two preimages for eachxn11 .
For ucu,1, the system is asymptotically stable. Figure
shows the synchronization set, which consists of a se
lines. The topology in this case is unusual because the d
is not continuous; we expect that for the more typical case
a continuous noninvertible drive-response system, the s
chronization set will be connected. However, we believe t
the one-to-many structure illustrated by this example is ty
cal of many cases.

The structure of this synchronization set can be und
stood using a linear transformation of the full (x,y) system.
In particular, let (x̃ ỹ)T5T(x y)T, where

T~c!5S 1 0

22~12c!/c ~22c!~12c!/cD . ~5!
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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In the new coordinates, Eq.~4! becomes the ‘‘skinny’’ bak-
er’s map given by

x̃n115H 2x̃n, x̃n,0.5,

2~ x̃n20.5!, x̃n>0.5,

ỹn115H cỹn, x̃n,0.5,

cỹn1~12c!, x̃n>0.5.
~6!

Under one iteration, the two halves of the unit square
mapped into two horizontal rectangles as shown in Fig.
For c,1/2, this map contracts area at a rate given by 2c.
After n iterations, the original unit square is mapped inton

horizontal strips of heightcn, and the limiting set of this
process is a Cantor set of lines. The attracting set of
original map~Fig. 12! is the image of this Cantor set of line
under the transformationT21(c).

FIG. 11. The multivalued synchronization sets resulting from Eq.~3! for ~a!
r50.3 and~b! r50.8. In both cases,c50.3.

FIG. 12. The synchronization set of Eq.~4! with c50.35.
Downloaded 02 Jun 2003 to 129.174.150.51. Redistribution subject to AI
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This example also demonstrates how a multivalued s
chronization structure is directly related to the history of t
drive. In terms of the thin baker’s map, one particular histo
of a drive statex̃n can be uniquely described by a sequen
of the symbolsR and L, constructed by listing anL each
time that a preimage lands to the left ofx̃51/2, and anR
each time that a preimage lands to the right ofx̃51/2. An
illustration is given in Fig. 14 in which we have drawn th
images of two halves of the unit square as we iterate Eq.~6!
forward twice. At the end of the second iteration, we c
associate different symbol sequences with the po
( x̃n( i ),ỹ( i )) ( i 51,...,4), where each such point is locat
within a different horizontal strip and all correspond to t
samex̃ value at timen. A finer resolution of the striated
strips corresponds to additional steps backwards in ti
which in turn corresponds to more symbols in the sym
sequence. Each point has a distinct infinite symbol seque
Using a metric on the space of symbol sequences, one
also determine the difference between the orbits of any
striations. Two striations are close together if the most rec
symbols in the sequence are identical.

The case of a noninvertible drive discussed in this s
tion may be reduced to the case with an invertible driver
the expense of replacing the driving system with one tha
more complex. LetV5(X,f) be the space of all infinite se
quences (x0 ,x1 ,...) such thatxi5f(xi 11) ~the inverse limit

FIG. 13. The skinny baker’s map.

FIG. 14. Dynamics under the skinny baker’s map of Eq.~6!. Top left: The
original domain is divided into regionsR andL. Top right: The image ofR
and L after one iterate. Bottom: After two iterates, the original regionR
maps to the regions labeledRL andRR, and the original regionL maps to
the regions labeledLL andLR.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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space!. We define aninvertible map f̂ on V by f̂(x0 ,x1 ,...)
5(f(x0),x0 ,x1 ,...). It iseasy to check that the response s
tem in Eq.~1! and the response system in

x̂85 f̂~ x̂!,

y85g~p0~ x̂!,y!, ~7!

receive the same input, wherep0( x̂)5x0 is the projection of
the sequencex̂ onto its first coordinate. Therefore, the d
namics of these response systems is the same in both c
The driving system in Eq.~7! is invertible, and thus the
graph transform method converges to a single-valued m
f̂:V→Y. The multivalued functionf whose graph is the
synchronization set in Eq.~1! can be obtained by projectin
graph(f̂) onto the first coordinate.

The complexity of the synchronization set becomes
parent when the topology of this inverse limit spaceV is
analyzed. This space has an extremely complicated struc
even in the relatively simple case of unimodal maps of
interval.34 To get a better description of the synchronizati
set, we briefly outline an extension of the idea of symb
sequences introduced in the case of the ‘‘skinny’’ bake
map. The construction of systems with invertible drivers
inverse limit spaces will be addressed in more detail e
where.

We will describe this method in the case of the tent m
f of the intervalI 5@0,1# with critical point 1/2, and such
that f (1/2)51. The critical point separates the interval in
subintervalsI 1

15@0,1/2# and I 2
15@1/2,1#. The preimage of

each of these intervals consists of the intervalsI 1
2 , I 2

2 andI 3
2 ,

I 4
2 such that f (I 1

2)5 f (I 2
2)5I 1

1 and f (I 3
2)5 f (I 4

2)5I 2
1. This

process can be continued to create a tree of intervals
that a pair of intervals on the (n11)-st level of the tree map
to an interval in thenth level of the tree.

If the mapf defines the driving map of the system in E
~1!, the graph transform method can be performed on infin
paths starting at any nodeI m

n in this tree of intervals. The
method converges to a functionfm

n :I n
m→Y over the first

interval in such a path. The graphs of these functions are
invariant themselves, however, under the dynamics of
~1!, graph(fm

n ) maps into graph(fm8
n21) when f (I m

n )5I m8
n21 ,

and thus the family$graph(fn
m)%n,m is an invariant family of

graphs. Moreover the graphs in this family are joined o
the points in the history of the critical point 1/2, i.e., over t
pointsk/2n.

This idea can be extended to describe the invariant
over more complicated driving systems. In the case of
~2!, we again obtain a family of graphs which are joined ov
the orbits of the critical points. If the map of the drivin
system is smooth, we again encounter the problems
cussed in Sec. II B, since the contraction becomes very la
close to the orbits of the critical points. Thus, smoothness
the graphs in the invariant family cannot be expected at
orbit that is close to the orbit of the critical point over suf
ciently many iterates.

We conclude this section by stressing that the multiv
ued structure of the synchronization set for all these case
an intrinsic feature of the underlying dynamics resulti
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from the presence of noninvertibility. Thus, we expect th
the multivalued nature off(x) persists for almost all value
of c.

D. Combinations

Finally, we briefly note that the various cases describ
above can coexist. For example, Fig. 15 shows a case th
both multivalued and wrinkled; this is obtained using Eq.~2!
and settingl50.2, a50.3, s520.8, andc50.7. Further-
more, since a smooth noninvertible map must have crit
points, the situations described in Sec. II B and Sec. I
should be expected to occur together.

Animations showing the evolution of the synchroniz
tion set as boths andc are varied are available on the web.24

III. QUANTIFICATION

Here we present two methods for quantifying the fe
tures of the synchronization set that we have descri
above.

A. emaxÀd test

Most practical methods of detecting nonlinear synchro
in data rely strongly on the continuity off, and in general
also require a certain degree of smoothness off.5–7 These
methods generally proceed by checking if clusters of po
in X correspond to similarly small clusters of points inY. It
is important to note that the presence of the intrinsic geom
ric features that we have discussed above can significa
hinder the experimental detection of more complicated~and
perhaps more interesting! synchronous relationships.

Consider the following numerical test based on the d
nition of continuity. Iterate the system of interest@e.g., Eq.
~1!# for a sufficiently long time to allow transients to die ou
Pick a point~x,y! on the attractor and a small numberd, and
iterate the full system until thex-component of the trajectory
lands in the ballBx(d) a large number of times. Keep trac
of these points, and letemax denote the largest distance b
tween the correspondingy-components. Iff is differen-
tiable, then typicallyemax→0 linearly asd→0. When uhdu
.uhr u, the functionf is typically only Hölder continuous,
andemax→0 sublinearly asd decreases. The Ho¨lder exponent
of f at x can be estimated from the slope of the graph

FIG. 15. A multivalued and wrinkled synchronization set obtained from E
~2! with l50.2, a50.3, s520.8, andc50.7.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 16. Graphs of ln(emax) versus
ln(d) for Eq. ~2!. In each case, severa
curves are shown, corresponding
several randomly chosen fiducia
points in the driver. The thick line has
slope 1. The graphs correspond to~a!
the smooth case in Fig. 2~a!; ~b! the
wrinkled case in Fig. 2~b!; ~c! the
cusped case in Fig. 6; and~d! the mul-
tivalued ~looped! case in Fig. 9.
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ln(emax)-ln d, and to probe the overall smoothness of the s
chronization set, an ensemble of scaling curves with r
domly chosen fiducial pointsx can be studied.

Figures 16~a!–16~d! show the results of applying thi
process to the various cases considered above. First, con
the smooth/wrinkled transition discussed in Sec. II A,
which s51 in Eq. ~2!. Whenuhdu,uhr u, f is smooth almost
everywhere, and the ln(emax)–lnd curves have slope 1, a
shown in Fig. 16~a!. In contrast, whenuhdu.uhr u, the syn-
chronization set is only Ho¨lder continuous and thusf is not
differentiable almost everywhere. The scaling curves the
fore have smaller slopes, as shown in Fig. 16~b!. For this
case, synchronization detection methods may not be ab
detect synchronization at all, even in the absence of nois

In the cusped case, cusps of decreasing size occu
~and near! forward iterates ofu51/2 for all c. However, the
synchronization set may be otherwise smooth, dependin
c. Thus, the ln(emax)–lnd graphs show a variety of slope
depending on the location of the fiducial pointx; see Fig.
16~c!. While most curves have slope 1, a few have sma
slopes. In this case, standard synchrony detection met
fail to detect the presence of the cusps.

Figure 16~d! demonstrates the effect of the multivalue
structure of Eq.~4! ~Fig. 12! on the ln(emax)–lnd graphs.
These are seen to saturate at a scale that corresponds
‘‘thickness’’ of the synchronization set. As a consequen
the ability to predict the state of the response system fr
the state of the drive is severely affected, and this situa
cannot be improved by increasing the precision of the m
surements. Although there is a dynamically coherent re
tionship between the driver and the response~in fact, the
system is asymptotically stable!, most synchronization detec
tion methods will fail to detect any synchronous relations
in such multivalued cases.
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B. Wavelets

As shown in Sec. II A, the Ho¨lder exponent off at a
point x depends on the ratio of two contraction rates, and
therefore vary from point to point. This is characteristic o
multifractal set. In this section we use the wavelet metho
described in Ref. 35 as a more accurate way to examine
regularity of multifractal synchronization sets. In particula
we are interested in estimating the typical Ho¨lder exponents,
i.e., those that occur on some set of full measure, as we
the distribution of other, nontypical exponents. The details
this method are briefly discussed in the Appendix, and
interested reader is referred to the literature on the estima
of the regularity of functions using wavelet techniques.35,36

Since the functionf(u,v) obtained from Eq.~2! is constant
in the v direction, we will keepv constant in our analysis
and treatf as a function from the real line to itself.

The wavelet transform may be thought of as a spa
localized counterpart of the Fourier transform. The Four
transform decomposes a function into sinusoidal compon
of varying frequency, which are not localized in space.
contrast, the wavelet transform decomposes a signal in
family of wavelets of varying location and sizeC((u
2b)/a). All the wavelets in such a family are obtained fro
a single functionC(u), which is shifted byb and dilated by
a factora. The ‘‘mother wavelet’’C(u) is typically chosen
to be localized in space, so that we can think of the wave
transform as a microscope magnifying an area aroundu5b
by a factora.

A smooth function looks nearly constant after sufficie
magnification, and hence the coefficients of the wave
needed to describe such a function at small scales are
ishingly small. On the other hand, cusps or wrinkles per
under magnification, and hence wavelets of all sizes
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 17. The wavelet transform of the
wrinkled f discussed in Sec. II A. The
middle figure represents the wavele
coefficients at different scales. Th
light regions correspond to large
wavelet coefficients. Wavelet coeffi
cients fora5212 are plotted in the bot-
tom figure. Note that the self-
similarity of the graph is reflected in
the wavelet coefficients. We have use
Matlab routines from the package
WaveLab in the analysis presented
Figs. 17–20.
el
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needed to describe a function around such points. It can
shown that, for appropriately chosen wavelets, the wav
coefficients scale as

WC~u0 ,a!;ah(u0)

at a pointu0 , wherea is the scaling factor of the wavelet an
h(u0) is the Hölder exponent of the function at tha
Downloaded 02 Jun 2003 to 129.174.150.51. Redistribution subject to AI
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et
point.35,36Unlike the Fourier transform, which can be used
give general information about the roughness of a functi
this fact allows us to use wavelets to estimate the lo
roughness of a function.

These ideas are illustrated in Figs. 17 and 18. In Fig.
we have chosen the wrinkled synchronization set discus
in Sec. II A. The white regions show regions of high wave
FIG. 18. The wavelet transform of the
cuspedf discussed in Sec. II B. The
graphs are the same as in Fig. 17.
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FIG. 19. The typical smoothness o
the synchronization manifold as a
function of the coupling strengthc.
The solid line is obtained from the the
oretical prediction, while the dashe
line is obtained from the wavele
transform. For any finite resolution
level, the wavelet method provides a
upper bound forg t which is consistent
with the observed numerical overest
mate.
nt
le
a
e

h
p,

ing
coefficients. Note that the graph of the wavelet coefficie
reveals the self-similar structure of the graph. The wave
coefficients computed for the cusped case of Sec. II B
shown in Fig. 18. In this case, the cusps are distributed v
sparsely, but occur at many different scales.

Returning to the wrinkled case of Sec. II A, in whic
settings51 in Eq. ~2! reduces the drive to the baker’s ma
Downloaded 02 Jun 2003 to 129.174.150.51. Redistribution subject to AI
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the typical past-history Lyapunov exponent in the contract
direction is given by

hd5a ln l1~12a!ln~12l!,0, ~8!

and the response Lyapunov exponent ishr5 ln c.18 Therefore,
the typical Hölder exponentg t of the synchronization set is
ity
FIG. 20. The functionsDH(g) for the
wrinkled case withc50.7, a50.7,
and l50.8 ~solid line!, and for the
cusped case withc50.2, a50.3, and
l50.2 ~dashed line!. In the wrinkled
casegmin'0.2 is predicted correctly.
In the cusped case due to the spars
of cusps, it is difficult to compute
DH(g) numerically for small Ho¨lder
exponents.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



-
y i

en

is-

-

k
a

ion
w
ff

id
o
tio
m

he
tic
ee
ed

m
in

ive
ch
tio
p
os
ou

re
te
za
ig
th
m
ra

nd
al

a-
g

rd

the
. It
ng in
n-

e

ty

d in

ribe
ded
to

od

s

es
-

ffi-

163Chaos, Vol. 13, No. 1, 2003 The geometry of chaos synchronization
g t5
ln c

a ln l1~12a!ln~12l!
. ~9!

In Fig. 19, g t computed numerically as a function ofc is
compared with the results obtained analytically from Eq.~9!.

The smallest~largest! Hölder exponent on the synchro
nization set corresponds to points whose orbits lie entirel
the part of the square which is more contracting~less con-
tracting!. Therefore, we obtaingmin5ln c/ln l and gmax

5ln c/ln(12l) if l.1/2. The Hölder exponents off there-
fore range fromgmin to gmax, and are equal tog t on a set of
full measure.

We introduce the dimensionDH(g) of the set of all
points in the domain off at whichf is Hölder with expo-
nent g. SinceDH(gmin)5DH(gmax)50 and DH(g t)51, this
function varies between 0 and 1. As explained in the App
dix, wavelets provide a natural way of computingDH(g) as
a function ofg. The functionDH(g), frequently called the
singularity spectrumf (a), is expected to have a character
tic ù shape, hitting zero atgmin and gmax and attaining a
maximum atg t . The g t in Fig. 19 were obtained by com
puting DH(g) numerically for eachc, and finding the
maxima.

In Fig. 20 we show theDH(g) functions for a wrinkled
and a cusped synchronization set. Note that the pea
DH(g) in the cusped case is to the right of 1, showing th
the function is differentiable on a set of Hausdorff dimens
1. The function corresponding to the wrinkled case sho
that thef is only Hölder continuous on a set of Hausdor
dimension 1.

The wavelet analysis of signals presented here prov
a computationally robust estimation procedure, and is m
systematic than the method described in the previous sec
Moreover, the graphical display of the singularity spectru
is an interpretable way of quantifying the irregularities of t
signal. Using these methods it is possible to make statis
distinctions between different signals. This idea has b
successfully used to distinguish between signals in biom
cal applications.37

IV. CONCLUSION

In summary, we have shown that for coupled syste
without symmetries, systems can be coherent without hav
easily-detectable synchronization properties. We have g
examples of invertible and noninvertible drivers for whi
the system is asymptotically stable, yet the synchroniza
set is nonsmooth or multivalued. We have given an exam
of a test for synchrony which incorporates features of m
standard tests. We illustrate the misleading nature of the
come of this test~and most standard tests! when it is applied
to synchronization sets containing the complicated featu
of our examples. Furthermore, we give a sophistica
method of detection designed for multifractal synchroni
tion sets. These coherent yet complicated structures m
affect the generation of ‘‘reliable response’’ in neuronal pa
ways within actual biological systems. In conclusion, we e
phasize that complicated synchronization sets and their p
Downloaded 02 Jun 2003 to 129.174.150.51. Redistribution subject to AI
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tical implications are not pathological: asymmetry a
noninvertibility are typical in many biological and physic
systems.
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APPENDIX: WAVELET FORMALISM

In recent years much research has been devoted to
study of the multifractal properties of singular measures
has been observed that many fractal measures appeari
practice scale differently at different points. Thus if we co
sider a measurem on a spaceX and ballsBx(e) of radiuse
centered atx, and define thesingularity strengthof the mea-
sure atx by a(x) where

m~Bx~e!!;ea(x),

then it is frequently observed thata(x) is not constant.
To characterize the size of the sets over whicha(x) is

constant one may cover the entire support ofm with balls of
radiuse and letNa(e) be the number of balls that scale lik
ea for a given value ofa. The Hausdorff dimensionf (a) of
the set on whicha(x)5a is then obtained by examining
how Na(e) scales ase→01, i.e.,

Na;e2 f (a). ~A1!

As noted in Ref. 35, instead of a measurem, we may
consider a functionF and define the strength of a singulari
of F at a pointx by

uF~Bx~e!!u;ea(x),

whereu•u is used to denote the size of a set. As discusse
previous sections,a(x) is exactly the Ho¨lder exponentg(x)
of the functionF at the pointx and we may think off (a) as
the Hausdorff dimensionDH(g) of the set of points at which
F is Hölder with exponent exactlyg. It follows that the ther-
modynamic formalism that has been introduced to desc
the statistical properties of singular measures, and exten
to the case of functions in Ref. 38, can be applied directly
the present problem.39

Arneodoet al. have introduced a wavelet based meth
to numerically estimateDH(g).35 It can be shown that the
wavelet transform

WC@F#~b,a!51/aE
2`

`

C̄~~x2b!/a!F~x!dx

for a waveletC that is orthogonal to linear functions scale
as

WC~x0 ,a!;ah(x0)

in the limit a→01.40 ~In the preceding, the overbar denot
complex conjugation.! This means that ideally one could de
termine the Ho¨lder regularity of a function at a pointx0 by
computing the exponential decay rate of its wavelet coe
cients.
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164 Chaos, Vol. 13, No. 1, 2003 Barreto et al.
This approach does not circumvent the difficulty pos
by the fact that singularities accumulate on each other in
case of fractal functions, and therefore an indirect meth
needs to be used to approximate quantities likeDH(g). To
examine the properties of a functionF, we cover its domain
with N(e) balls Bx(e) and define apartition function,

Z~q,e!5 (
i 51

N(e)

uF~Bx~e!!uq.

The functionZ(q,e) scales aset(q) ase→01. A fundamen-
tal result in the multifractal formalism states thatt(q) is the
Legendre transform of the singularity spectrumDH(g) of F.
Assuming thatt is differentiable, we can determineDH(g)
from the following relations:

DH~g!5qg2t~q!,

g5
d

dq
t~q, j !.

We briefly mention that since theu coordinates of the
iterates of the map defined by Eq.~2! are not distributed
uniformly, standard wavelet transform algorithms which re
on tools such as the FFT cannot be used directly. Instead
started with a large number of points, linearly interpolat
them, and subsampled the resulting partially linear funct
on a uniform grid. This procedure tends to smooth out
function at small scales, so care needs to be taken to use
wavelets on scales that are sufficiently large. A similar
proach has been used in Ref. 41.
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