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ABSTRACT2

We examine the emergence of collective dynamical structures and complexity in a network3
of interacting populations of neuronal oscillators. Each population consists of a heterogeneous4
collection of globally-coupled theta neurons, which are a canonical representation of Type-15
neurons. For simplicity, the populations are arranged in a fully autonomous driver-response6
configuration, and we obtain a full description of the asymptotic macroscopic dynamics of this7
network. We find that the collective macroscopic behavior of the response population can exhibit8
equilibrium and limit cycle states, multistability, quasiperiodicity, and chaos, and we obtain detai-9
led bifurcation diagrams that clarify the transitions between these macrostates. Furthermore,10
we show that despite the complexity that emerges, it is possible to understand the complicated11
dynamical structure of this system by building on the understanding of the collective beha-12
vior of a single population of theta neurons. This work is a first step in the construction of a13
mathematically-tractable network-of-networks representation of neuronal network dynamics.14

Keywords: theta neuron, type-I neuron, hierarchical network, neural field, macroscopic behavior, coherence, synchrony, chaos15

1 INTRODUCTION

The brain is a complex hierarchical network of networks (Bullmore and Sporns (2009); Meunier et al.16
(2010); Zhou et al. (2006)). Neurons are organized into different neuronal assemblies, and these neuronal17
assemblies interact with each other, forming larger assemblies (Sherrington (1906); Hebb (1949); Har-18
ris (2005)). But while there is a wealth of knowledge on the microscopic scale regarding the dynamics19
of individual neurons, the macroscopic behavior of such interacting populations of neurons is not well20
understood. Indeed, the functional and information-processing activity of the brain, from perception to21
consciousness, is thought to result from the emergent collective behavior of these assemblies.22

In recent years, the mathematical study of networks of this kind, based on globally-coupled popula-23
tions of simple phase oscillators, has advanced significantly. This is in large part due to new analytical24
techniques (Ott and Antonsen (2008, 2009); Marvel et al. (2009); Pikovsky and Rosenblum (2011);25
Ott et al. (2011)). These techniques enable the derivation of low-dimensional dynamical systems that26
reveal the collective emergent behavior of the full discrete population (in the limit of an infinite number27
of interacting elements). In the context of computational neuroscience, these methods were applied to28
autonomous globally-coupled networks of canonical Type-I neurons (i.e., theta neurons) by Luke et al.29
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(2013), and to non-autonomous theta neuron networks by So et al. (2014). More recently, Laing (2014)30
extended these results to include space-dependent coupling. A similar approach, based on phase-response31
curves, was pursued by Pazó and Montbrió (2014).32

Of course, such networks lack the intricate connectivity found in real biological networks. Neverthe-33
less, they are ideal building blocks for the construction of a more realistic, yet mathematically tractable,34
network-of-networks representation of the brain. In the current study, we consider the simplest hiera-35
rchical structure as a first step in this process. Using two globally-coupled networks of theta neurons, we36
arrange for the emergent collective activity of one population to drive the second population. Thus the ove-37
rall network has an autonomous driver-response configuration. We demonstrate that even in this simplest38
network-of-networks, the collective behavior of the response network can exhibit a full range of complex39
behavior, from simple collective rhythms to temporally chaotic dynamics. Most importantly, we provide40
a complete nonlinear dynamical analysis of this system, including predictive bifurcation diagrams for the41
behavior of the response population in terms of the driver’s dynamics and the network characteristics.42

2 RECAP OF SINGLE POPULATION RESULTS

2.1 THE THETA NEURON

Neurons are typically classified into two types, based on the nature of the onset of spiking as a con-43
stant injected current exceeds an effective threshold (Hodgkin (1948); Ermentrout (1996); Izhikevich44
(2007)). Type-I neurons begin to spike at an arbitrarily low rate, whereas Type-II neurons spike at a45
non-zero rate as soon as the threshold is exceeded. Neurophysiologically, excitatory pyramidal neurons46
are often of Type-I, and fast-spiking inhibitory interneurons are often of Type-II (Nowak et al. (2003);47
Tateno et al. (2004)). Near the onset of spiking, Type-I neurons can be represented by a canonical phase48
model that features a saddle-node bifurcation on an invariant cycle, or SNIC bifurcation (Ermentrout49
and Kopell (1986); Ermentrout (1996)). This model has come to be known as the theta neuron, and is50
given by51

θ̇ = (1− cos θ) + (1 + cos θ)η, (1)

where θ is a phase variable on the unit circle and η is a bifurcation parameter related to the injected current.52
For η < 0, the neuron is attracted to a stable equilibrium which represents the resting state. An unstable53
equilibrium is also present, representing the threshold. If an external stimulus pushes the neuron’s phase54
across the unstable equilibrium, θ will move around the circle and approach the resting equilibrium from55
the other side. When θ crosses θ = π, the neuron is said to have spiked. Thus, for η < 0, the neuron56
is excitable. As the parameter η increases, these equilibria approach each other and merge via the SNIC57
bifurcation at η = 0. At this point, the equilibria disappear, leaving a limit cycle. The neuron spikes58
regularly for η > 0. In the following, we call η the “excitability parameter”.59

2.2 A NETWORK OF THETA NEURONS

We formulate a single population of N theta neurons as follows:60

θ̇j = (1− cos θj) + (1 + cos θj) [ηj + Isyn] , (2)

where j = 1, · · · , N is the index for the j-th neuron. The neurons are coupled via a pulse-like synaptic61
current62

Isyn =
k

N

N∑
i=1

Pn(θi), (3)
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where Pn(θ) = an (1− cos θ)n, n ∈ N, and an is a normalization constant 163 ∫ 2π

0
Pn(θ)dθ = 2π.

The parameter n defines the sharpness of the pulse-like synapse in that Pn(θ) becomes more and more64
sharply peaked as n increases. We assume that the synaptic strength k is the same for all neurons.65

Note that the connectivity described by Eqs. (2) and (3) includes self-coupling terms. These have negli-66
gible effect on the collective network dynamics (data not shown), which is to be expected since they67
represent only one out of N inputs to any given neuron. Nevertheless, we note that these self-connections68
have real-world analogs in “autapses”, which have been found in several regions of the brain (e.g., Bacci69
et al. (2003); Bekkers (2003)).70

Neurons in real biological networks exhibit a range of different intrinsic dynamics. We model this by71
taking the excitability parameter ηj of each neuron to be different, with each ηj being drawn randomly72
from a distribution g(η). In the following analysis, we assume a Lorentzian distribution,73

g(η) =
1

π

∆

(η − η0)2 + ∆2
, (4)

where η0 is the center of the distribution, and ∆, the half-width at half-maximum, describes the degree of74
heterogeneity in the population.75

2.3 REDUCTION AND ASYMPTOTIC STATES OF THE SINGLE POPULATION

The macroscopic behavior of our network can be quantified by the “macroscopic mean field”, or order76
parameter, defined as77

z̃(t) =
N∑
j=1

eiθj , (5)

where the tilde indicates that the sum is over a finite population of N oscillators. (Below we will drop the78
tilde in the case of an infinite network.) The magnitude of the order parameter |z̃(t)| ∈ [0, 1] quantifies the79
degree of synchronization present at time t.80

In Luke et al. (2013), we used the Ott-Antonsen method (Ott and Antonsen (2008, 2009); Ott et al.81
(2011)) to derive a low-dimensional dynamical system whose asymptotic dynamics can be shown to82
coincide with that of the order parameter of the single-population network defined above (Eqs. (2)-(4)), in83
the limit N →∞. This reduced dynamical system is84

ż = −i(z − 1)2

2
+

(z + 1)2

2
{−∆ + i [η0 + kHn(z)]} , (6)

where85

Hn(z) = Isyn/k = an

A0 +
n∑
q=1

Aq(z
q + z∗q)

 , (7)

86

Aq =
n∑

j,m=0

δj−2m,qQjm, (8)

1 an = 2π/
∫ π
−π(1− cos(x))n = n!/(2n− 1)!!
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and87

Qjm =
(−1)j−2mn!

2jm!(n− j)!(j −m)!
. (9)

In these equations, z∗ denotes the complex conjugate of z, and δi,j is the Kronecker delta function on the88
indices (i, j). Note that Hn(z) = H∗

n(z) is a real-valued function.89

The analysis of Eqs. (6)-(9) reported in Luke et al. (2013) showed that the theta neuron network can90
exhibit three types of asymptotic states. These correspond to a node, a focus, and a limit cycle in the order91
parameter. A complete bifurcation analysis describing how these states change as the parameters k, η0,92
and ∆ change was also reported. For our purposes in the current work, we now briefly describe the three93
possible collective macroscopic states.94

We called the node, focus, and limit cycle solutions the “Partially Synchronous Rest” (PSR), “Partially95
Synchronous Spiking” (PSS), and “Collective Periodic Wave” (CPW) states, respectively. In the PSR96
state, most neurons remain at rest, while in the PSS state, most neurons spike continuously. Nevertheless,97
in both these states, the macroscopic mean field (or order parameter) sits at an equilibrium. In contrast,98
the CPW state corresponds to periodic oscillations of the complex order parameter, and typically, both99
|z(t)| and arg(z) oscillate in time indicating that the individual neurons clump together and spread apart100
in a periodic fashion. We refer the interested reader to Luke et al. (2013) for further details, including101
movies that illustrate both the microscopic and macroscopic behaviors of these collective states.102

3 FORMULATION OF THE DRIVER-RESPONSE NETWORK

In this work, we are interested in the dynamics exhibited by a network of two coupled populations of103
theta neurons. We formulate the general case, but restrict analysis to the simplest such configuration: a104
driver-response network.105

3.1 GENERAL TWO-POPULATION MODEL

Extending the model described above, a general formulation of pair of interacting populations of theta
neurons can be expressed as follows:

θ̇1,j =1 + η1,j − (1− η1,j) cos θ1,j

+ an(1 + cos θ1,j)

k11
N1

N1∑
p=1

(1− cos θ1,p)
n +

k12
N2

N2∑
q=1

(1− cos θ2,q)
n

 ,
θ̇2,j =1 + η2,j − (1− η2,j) cos θ2,j

+ an(1 + cos θ2,j)

k21
N1

N1∑
p=1

(1− cos θ1,p)
n +

k22
N2

N2∑
q=1

(1− cos θ2,q)
n

 , (10)

where θ1,j and θ2,j denote the jth neuron in the first and second populations, respectively, and the exten-106
sion to any number of interacting populations is straightforward. The excitability parameters η1,j and η2,j107
are randomly drawn from independent Lorentzian distributions as in Eq. (4), with medians η1, η2 and108
widths ∆1, ∆2, respectively. We take the sharpness parameter of the pulse-like synaptic interaction, n, to109
be the same for both populations. Macroscopic mean field parameters z̃1(t), z̃2(t) can be defined for each110
population by analogy with Eq. (5).111

Adapting the procedures described in Luke et al. (2013), we derived the Ott-Antonsen reduction of the112
coupled networks of Eq. (10). This resulted in the following dynamical system:113
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Figure 1. The driver-response configuration. k11 and k22 are the intra-population coupling strengths for
populations 1 and 2, respectively, and k21 is the uni-directional coupling strength between the driver
population (1) and the response population (2).

ż1 = −i(z1 − 1)2

2
+

(z1 + 1)2

2
{−∆1 + i [η1 + k11Hn(z1) + k12Hn(z2)]} ,

ż2 = −i(z2 − 1)2

2
+

(z2 + 1)2

2
{−∆2 + i [η2 + k21Hn(z1) + k22Hn(z2)]} . (11)

with Hn(z) defined as in Eqs. (7)-(9). As before, the asymptotic dynamics of Eqs. (11) can be shown114
to coincide with that of the order parameters of the populations in the network of Eq. (10), in the limit115
N1, N2 →∞.116

We showed in Luke et al. (2013) that the dynamical structure of the single population depends rather117
weakly on the synaptic sharpness parameter n. Furthermore, we argued that a modest sharpness is more118
biophysically plausible than the δ-function coupling obtained in the limit n → ∞. Thus, from here on,119
we fix n = 2 and drop the subscript on Hn to ease notation.120

3.2 THE DRIVER-RESPONSE SYSTEM

To put our network in driver-response form, we set k12 = 0, so that population 1 receives no input from121
population 2. Therefore, the macrostates and bifurcations of population 1 are identical to those explored in122
Luke et al. (2013), described above. However, we allow k21 6= 0. Our goal is to examine the consequences123
of the influence of population 1 on population 2. We call population 1 the “driver” and population 2 the124
“response” system. See Figure 1.125

Writing the governing equation of population 2 as126

ż2 = −i(z2 − 1)2

2
+

(z2 + 1)2

2

{
−∆2 + i

[
ηeff + k22H(z2)

]}
(12)

with127
ηeff ≡ η2 + k21H(z1), (13)

and comparing to Eq. (6), we see that the behavior of population 2 is the same as that of a single population128
of theta neurons with an effective median excitability parameter ηeff . This effective parameter depends129
on η2, the median excitability parameter intrinsic to population 2, the inter-population coupling k21, and130
the state of the driver z1.131
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Note that ηeff depends linearly on both η2 and k21 and nonlinearly on the driver’s state z1 through132
H(z1). Additionally, ηeff may be time-dependent if population 1 exhibits a CPW state, since in that case133
z1 oscillates periodically. In the following, we will examine all these cases.134

4 RESULTS

We will examine the behavior of population 2 as various parameters are varied. We organize the presen-135
tation of our results by first considering the case in which the driver population exhibits an equilibrium136
state. Later, we consider the case in which the driver population exhibits periodic behavior.137

We will mainly consider two configurations of the response system. The “excitatorily coupled” response138
system has k22 > 0, and the “inhibitorily coupled” response system has k22 < 0. Other parameters are as139
noted below.140

The bifurcation diagrams that appear below in Figures 2, 3, 4B, 5B, and 8C were obtained using141
XPPAUT (Ermentrout (2002)). Data for all other figures were generated using custom-designed code.142

4.1 DRIVER ON A MACROSCOPIC EQUILIBRIUM

We begin by fixing the driving population’s parameters at η1 = −0.2, ∆1 = 0.1, and k11 = −2, which143
corresponds to a PSR state. Thus z1 remains fixed at a constant value. We examine the behavior of the two144
response system configurations as we vary the inter-population coupling parameter, k21. From Eq. (13),145
ηeff varies linearly with respect to k21.146

4.1.1 Excitatorily-coupled response system We set the response system’s internal coupling to k22 = 9,147
and show in Figure 2A the two-parameter bifurcation diagram of the response system with respect to ∆2148
and ηeff . Two saddle-node bifurcation curves which meet at a cusp are seen. To the left of these curves,149
the response network exhibits a PSR state, and to the right, a PSS state. These states coexist inside the150
approximately triangular region.151

We set the remaining parameters of the response system to η2 = −10 and ∆2 = 0.5. Thus, for k21 = 0,152
ηeff = η2, and the response system is situated at the solid black point marked in Figure 2A. As k21153
increases from zero, ηeff increases linearly along the dotted line in Figure 2A, starting from the black154
point. In so doing, it traverses the SN bifurcation curves. Figure 2B shows how the imaginary part of the155
response’s asymptotic macroscopic mean field (y2 = Im(z2)) changes with respect to k21, illustrating the156
coexistence of the stable PSR and PSS states, along with an unstable PSR state (uPSR).157

The point marked “SN/NF” in Figure 2B indicates that as k21 increases, a saddle node bifurcation is158
encountered, corresponding to the left SN curve in Figure 2A. This creates a stable and an unstable PSS159
state. However, the unstable PSS state converts into an unstable PSR state at a value of k21 very slightly160
beyond the SN bifurcation. That is, the node corresponding to the unstable PSS state becomes a unstable161
PSR focus, a transition we called a Node-Focus (NF) transition in Luke et al. (2013). The distinction162
between these events is indistinguishable in the figure.163

4.1.2 Inhibitorily-coupled response system We performed a similar analysis for the case in which the164
response system’s internal coupling is k22 = −9, i.e., inhibitory, and η2 = 5. The remaining parameters165
were unchanged. The results are shown in Figure 3. In this case, the two-dimensional bifurcation diagram166
of the response system with respect to ∆2 and ηeff (Figure 3A) shows a similar (but mirror-image)167
cusp of saddle-node curves. A new feature is the occurrence of a codimension-2 Bogdanov-Takens (BT)168
point on the left SN curve, and the emergence of homoclinic (HC; green) and Andronov-Hopf (AH; red)169
bifurcation curves from the BT point.170
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Figure 2. (A) A two-dimensional bifurcation diagram of the excitatorily-coupled response system. The
heavy black lines are saddle-node (SN) bifurcation curves, and the solid dot denotes the parameters of the
response system when decoupled from the driver. In the cases considered in the main text, the driver causes
ηeff to vary along the horizontal dotted line. The parameters are: η1 = −0.2, ∆1 = 0.1, k11 = −2, and
k22 = 9. (B) The one-dimensional bifurcation diagram showing the asymptotic values of y2 = Im(z2)
vs. k21. Solid and dashed curves indicate stable and unstable equilibria, respectively, corresponding to
partially synchronous spiking (PSS) and partially synchronous resting (PSR) states. The parameters are
as in panel (A), with η2 = −10 and ∆2 = 0.5.

Figure 3B shows how the real part of the response’s asymptotic macroscopic mean field (x2 = Re(z2))171
changes with respect to k21. As before, ηeff increases linearly as k21 increases, starting from the black172
solid point in Figure 3A and moving toward the right, traversing the various bifurcation curves along the173
dotted line. Note the presence of the attracting limit cycle CPW state in Figure 3B, which emerges at the174
HC bifurcation and terminates at the AH bifurcation as k21 increases.175

It is interesting to note that in both cases described above, the same bifurcation structure would be176
encountered if, instead of varying k21 with a fixed value η2, we varied η2 with a fixed value of k21.177
While this is obvious from Eq. (13) since H(z1) is constant in these cases, this leads to the non-obvious178
conclusion that by modifying either the inter-population coupling or the intrinsic median excitability of179
the response population — two rather different system characteristics — one obtains identical transitions180
in the response network.181

4.1.3 Variation of the driver’s macroscopic equilibrium In the cases we considered previously, ηeff182
changed linearly with respect to the inter-population coupling k21. We now turn our attention to the effects183
incurred by altering the value of the driver influence function H(z1) in Eq. (13). We do this by varying the184
driver’s internal coupling strength k11, thus causing the driver’s asymptotic macroscopic mean field z1 to185
change. This manipulation has the effect of changing ηeff nonlinearly with respect to k11.186

For simplicity, we only consider a range of k11 such that the driver always remains on a macroscopic187
equilibrium state, and we fix the inter-population coupling at k21 = 2.0.188

We begin with the case of the excitatorily-coupled response system considered above, with η2 = −10,189
∆2 = 0.5, and k22 = 9, and choose the remaining driver parameters to be η1 = −0.05 and ∆1 = 0.05.190
Figure 4A shows the nonlinear behavior of ηeff as k11 is varied. Even though we are considering k11191
to be the independent parameter, we plot ηeff horizontally so that it may be easily compared to Figure192
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Figure 3. (A) The two-dimensional bifurcation diagram of the inhibitorily-coupled response system. The
heavy black lines are saddle-node (SN) bifurcation curves, green is a homoclinic (HC) bifurcation curve,
and red is an Andronov-Hopf (AH) bifurcation curve. The latter two curves emerge from a Bogdanov-
Takens (BT) point. The solid dot denotes the parameters of the response system when decoupled from
the driver. In the cases considered in the main text, the driver causes ηeff to vary along the horizontal
dotted line. The parameters are: η1 = −0.2, ∆1 = 0.1, k11 = −2, and k22 = −9. (B) The one-
dimensional bifurcation diagram showing the asymptotic value of x2 = Re(z2) vs. k21. Solid curves
denote stable equilibria; dashed black curves are unstable equilibria. Green represents the maxima and
minima of a collective periodic wave (CPW) limit cycle. The parameters are as in panel (A), with η2 = 5
and ∆2 = 0.5.

Figure 4. (A) The nonlinear behavior of ηeff as a function of k11 for the excitatorily-coupled response
system. ηeff is plotted horizontally to facilitate comparison with Figure 2A. The parameters are: η1 =
−0.05, ∆1 = 0.05, η2 = −10, with the inter-population coupling fixed at k21 = 2.0. (B) The one-
dimensional bifurcation diagram showing the asymptotic value of y2 = Im(z2) vs. k11. Solid and dashed
curves indicate stable and unstable equilibria, respectively. The parameters are as in panel (A), with
∆2 = 0.5 and k22 = 9.

This is a provisional file, not the final typeset article 8
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Figure 5. (A) The nonlinear behavior of ηeff as a function of k11 for the inhibitorily-coupled response
system. ηeff is plotted horizontally to facilitate comparison with Figure 3A. (B) The one-dimensional
bifurcation diagram showing the asymptotic value of x2 = Im(z2) vs. k11. Solid and dashed black curves
indicate stable and unstable equilibria, respectively, and green represents the maxima and minima of a
CPW limit cycle state. The parameters are: η1 = −0.05, ∆1 = 0.05, η2 = 5, ∆2 = 0.5, and k22 = −9.
The inter-population coupling is fixed at k21 = 3.5.

2A; recall that this shows the two-dimensional bifurcation diagram of the response system. Now, as k11193
changes, ηeff moves back and forth along the dotted line nonlinearly. In particular, Figure 4A shows194
that for very negative values of k11, ηeff is near −5, which corresponds to a point in Figure 2A to the195
right of the SN curves. As k11 increases, ηeff decreases to approximately −10, thus crossing both SN196
curves in Figure 2A from right to left in the process. ηeff subsequently increases, and goes back across197
the SN curves from left to right. Note that Figure 4A includes vertical lines marking the position of the198
SN bifurcations (i.e., the values of ηeff at which the horizontal line at ∆2 = 0.5 in Figure 2A crosses the199
SN curves).200

Figure 4B shows the behavior of the asymptotic state of the response system (y2 = Im(z2)) as a function201
of k11. This shows that as k11 increases, the response system passes through two separate regions of202
bistability, corresponding to the two traversals of the triangular bistable region in Figure 2A. Thus Figure203
4B is qualitatively similar to two copies of Figure 2B, with the structure for k11 < 0 reversed. Note that204
the two regions are not symmetrical. This is due to the nonsymmetric behavior of ηeff as k11 changes.205

Next, we examine how the same manipulation of the driver system affects the inhibitorily-coupled206
response system. The parameters are as above, but with η2 = 5 and k22 = −9. Figure 5A shows how ηeff207
changes as k11 is varied, again plotted with ηeff on the horizontal axis for ease of comparison with Figure208
3A. Note the vertical lines in Figure 5A marking the SN, HC, and AH bifurcations.209

The one-dimensional bifurcation diagram depicting the asymptotic state of the response system as a210
function of k11 is shown in Figure 5B. A situation similar to the previous case is observed. Two distorted211
versions of the structure of Figure 3B, with the features for k11 < 0 being reversed, are seen. Again, this212
is due to the nonlinear and asymmetric behavior of ηeff as it traverses the bifurcations in Figure 3A twice:213
first right to left, and then left to right, as k11 is increased. Note also the presence of an attracting limit214
cycle CPW state in intervals of both positive and negative k11.215
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Figure 6. (A) Simple periodic behavior in the response system driven by a CPW state of the driver as
a function of the inter-population coupling strength k21. The curves are local maxima and minima of
x2 = Re(z2). The driver parameters are η1 = 10.75, ∆1 = 0.5, and k11 = −9, and the response
parameters are η2 = −20, ∆2 = 0.5, and k22 = 9. (B) Slightly more complicated periodic behavior
obtained at the same parameters, except with η2 = −5. The curves are local maxima and minima of
y2 = Im(z2).

4.2 DRIVER ON A MACROSCOPIC LIMIT CYCLE

We now focus on the behavior of the response population when the driver is on a CPW state, which is a216
limit cycle of the driver’s macroscopic mean field (or order parameter). Throughout this section, we fix the217
driver parameters at η1 = 10.75, k11 = −9, and ∆1 = 0.5, which results in a CPW driver state for which218
H(z1) oscillates periodically in time. In particular, we have H(z1) > 0 for all time. Thus, according to219
Eq. (13), ηeff also oscillates periodically for k21 6= 0, and both the centroid and the amplitude of the ηeff220
oscillation increase as k21 increases.221

We show below that in this configuration, the response population can exhibit periodic, multista-222
ble, chaotic, and/or quasiperiodic behavior, depending on the response system’s parameters and the223
interpopulation coupling strength k21.224

4.2.1 Periodic behavior in the response system We begin by considering the excitatorily coupled225
response system, with ∆2 = 0.5 and k22 = 9, but with η2 = −20. When decoupled from the driver,226
this places the response system at a point well to the left in the parameter space of Figure 2A. Thus the227
response system in isolation asymptotes to a PSR state. As k21 is increased from zero to eight, ηeff oscil-228
lates back and forth along the horizontal line in Figure 2A at ∆2 = 0.5, but always stays to the left of229
the SN curves shown in that figure. Thus, the driver simply pushes the response system’s PSR state back230
and forth, avoiding any bifurcations. The result is simple periodic behavior in the driven response system.231
Figure 6A shows a plot of the maximum and minimum of x2 = Re(z2) versus k21. As k21 increases,232
the amplitude of this simple periodic behavior increases. We observe that the frequency of the response233
system’s oscillation is the same as that of the driver throughout this range of interpopulation coupling.234

We now change the response system such that η2 = −5, and leave all other parameters the same as235
above. This change places the response system at a point to the right of the SN curves in Figure 2A,236
and for these parameters, the uncoupled response system asymptotes to a PSS state. Once again, as k21237
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Figure 7. The response system’s behavior at parameters corresponding to Figure 6B at k21 = 6 (A, B)
and k21 = 10 (C, D), with z2 = x2 + iy2.

increases, ηeff oscillates back and forth along the ∆2 = 0.5 line in Figure 2A, but this time it does so238
always staying to the right of the SN curves.239

The result is multi-frequency periodic behavior in the response system that is more complicated than in240
the previous example. Figure 6B shows a plot of the local minima and maxima of y2 = Im(z2) versus k21.241
Figure 7 shows y2 vs. x2 plots of the periodic orbits at k21 = 6 (upper panels) and k21 = 10 (lower panels).242
As k21 increases from zero, a periodic orbit with winding number two emerges (similar to that shown in243
Figure 7A) and grows in amplitude, peaking near k21 ≈ 2.5. The amplitude subsequently decreases to244
a minimum near k21 ≈ 7.2, and then slowly increases again. Note that the four curves in Figure 6B for245
k21 ∈ [0, 7.2] correspond to two pairs of alternating local maxima and minima in the time series of y2, as246
shown in Figure 7B.247

Interestingly, near k21 ≈ 7.2, an additional loop appears in the orbit, as shown in Figure 7C. This is248
reflected in the additional inner curves in Figure 6B that appear for k21 ' 7.2, and the two additional local249
maxima and minima in the time series of y2 in Figure 7D.250

4.2.2 Multistability in the response system Continuing with the excitatorily coupled response system251
(with k22 = 9 > 0), we set η2 = −10 and leave all other parameters unchanged. In this case the uncoupled252
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Figure 8. Multistability in the response system driven by a CPW state of the driver. (A) Local maxima and
minima of y2 = Re(z2) vs. the inter-population coupling k21. (B) y2 vs. x2 plots showing two coexisting
limit cycles of the response system at k21 = 1.5 (dotted vertical line in panel (A)). (C) The solid and
dashed black curves show the asymptotic states of the response for fixed values of ηeff , with k21 = 1.5.
Green curves are coexisting limit cycles of the response system when coupled to the driver. Parameters
are: η1 = 10.75, ∆1 = 0.5, k11 = −9; η2 = −10, ∆2 = 0.5, k22 = 9.

response system is at a point just to the left of the left SN curve in Figure 2A, and as k21 increases,253
ηeff again sweeps back and forth along the horizontal line at ∆1 = 0.5. However, now this sweeping254
cuts across both SN curves. Thus, the response system sweeps back and forth across the approximately255
triangular multistable region bounded by the SN curves.256

Figure 8A shows the maxima and minima of x2 vs. k21 for this case. The first feature to emerge as k21257
increases from zero is a simple periodic orbit whose amplitude increases, similar to the example in Figure258
6A. At k21 ≈ 0.5, a new and separate coexisting limit cycle appears, as indicated by the upper curves that259
emerge in Figure 8A. Figure 8B shows the y2 vs. x2 plots of these two limit cycles at k21 = 1.5, where260
the larger orbit corresponds to the upper two curves in Figure 8A. In this bistable region, the macroscopic261
dynamics of the response system approaches one or the other of these periodic states, depending on the262
initial conditions.263

Figure 8C shows, in black, the asymptotic states of y2 vs. ηeff for fixed values of ηeff , with k21 = 1.5.264
These curves show that for a large interval of ηeff , a stable PSR coexists with a stable PSS and an265
unstable PSR state for the frozen (i.e., ηeff fixed) system. With the driver on the CPW state, ηeff sweeps266
from approximately −9.1 to −7.6 and back again – a range which is well within the bistable region.267
Superimposed in green in Figure 8C are projections of the two coexisting limit cycles onto this space,268
showing that the lower limit cycle is a simple periodic perturbation of the response system’s underlying269
PSR state, and the upper limit cycle is a periodic perturbation of the underlying PSS state.270

4.2.3 Chaos in the response system We now switch to the inhibitorily coupled response system, with271
parameters η2 = 5, ∆2 = 0.5, and k22 = −9. The parameter space of this system is shown in Figure272
3A, and the uncoupled response system resides at the solid black dot in that figure, to the left of all273
the bifurcations. As the interpopulation coupling strength k21 increases, ηeff sweeps across the same274
horizontal line at ∆2 = 0.5 with increasing amplitude and centroid, initially crossing just the left SN275
bifurcation curve. At k21 ≈ 5.2, ηeff begins sweeping across the homoclinic and the Andronov-Hopf276
bifurcation curves. Eventually, for sufficiently large k21, ηeff sweeps across all four bifurcation curves277
(SN, AH, HC, and SN).278

Figure 9A shows the local maxima and minima of x2 = Re(z2) vs. k21. We initially see the emergence279
of a simple periodic orbit that grows slowly in amplitude. However, at k21 ≈ 5.2, chaos suddenly emerges280
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Figure 9. Emergence of macroscopic chaos in the response system driven by a CPW state of the driver.
(A) Local minima and maxima of x2 = Re(z2) vs. the inter-population coupling k21. (B) Magnification
of the chaotic region (top), with a plot of the largest two Lyapunov exponents. Parameters are: ∆1 = 0.5,
k11 = −9, η1 = 10.75; ∆2 = 0.5, k22 = −9, η2 = 5.

through a crisis. Figure 9B shows a magnification of this region, with a plot of the two largest Lyapu-281
nov exponents. We see that there are significant intervals of k21 for which there is a positive Lyapunov282
exponent, indicating the presence of macroscopic chaos.283

As k21 increases, the first chaotic band, beginning at k21 ≈ 5.28, coexists with the simple periodic284
loop that was present for smaller k21 (this coexistence is not apparent in the figure). Outside of this band,285
there is a window dominated by periodic behavior of rather high period. A second chaotic band appears at286
approximately k21 = 5.48. This second band terminates at approximately k21 = 5.65, after which a series287
of reverse period-doubling cascades are seen.288

The y2 vs. x2 plot of the chaotic attractor present at k21 = 5.296, for which the largest Lyapunov289
exponent is approximately 0.2118, is shown in Figure 10A.290

4.2.4 Quasiperiodicity in the response system Finally, we consider the case in which the response291
system exhibits a CPW state when uncoupled from the driver, and ask what happens when this is driven by292
another CPW state in the driver. We use the same drive system parameters as above, and set the response293
system’s parameters to be the same except for ∆2 = 0.3. As the inter-population coupling strength k21 is294
increased, various phase-locked and quasiperiodic states are seen. An example of quasiperiodic behavior295
in the response system for k21 = 0.1 is shown in Figure 10B.296

5 DISCUSSION

In this work, we have taken the first step towards designing a mathematically tractable modular network-297
of-networks representation of neuronal systems. Our approach is based on dynamical analysis techniques298
that enable a complete description of the emergent macroscopic behavior of large, heterogeneous discrete299
networks of globally-coupled phase oscillators. Building on previous results (Luke et al. (2013)) in which300
we used these techniques to show that the collective dynamics of a single such population of theta neurons301
is relatively simple (exhibiting just equilibria and limit cycle states), we constructed the next simplest302
hierarchical structure: a driver-response configuration of theta neuron populations. Our results show that303
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Figure 10. (A) Chaotic (y2 vs. x2) and (B) Quasiperiodic (y2 vs. x1 vs. y1) attractors in the response
system driven by a CPW state of the driver. Parameters are: k11 = k22 = −9, with (A) η2 = 5, ∆1 =
∆2 = 0.5 and k21 = 5.296, and (B) η2 = 10.75, ∆1 = 0.5, ∆2 = 0.3, and k21 = 0.1.

even in this simplest of configurations, the response system (and hence, the network as a whole) can304
exhibit a full range of dynamical behaviors and surprising complexity. A notable strength of our work305
is that despite the complexity that emerges from this arrangement, the behavior can be understood and306
explained in terms of what is known about a single population’s dynamics and bifurcation structure.307

With the driving system on a fixed equilibrium, we showed that the response system is equivalent to308
a single population with a simple shift in one parameter. Specifically, this parameter is the median of309
the distribution of excitability parameters in the response system, which indicates whether the response310
population is dominated by excitable or intrinsically-spiking neurons. Although this arrangement does not311
introduce any new dynamical features, we showed that the response system can nevertheless still exhibit312
an interesting bifurcation structure involving macroscopic equilibria, limit cycles, and multistability as313
the strength of the inter-population coupling varies. More interestingly, we found that the inter-population314
coupling strength is effectively equivalent to the response system’s median intra-population excitability.315
By this we mean that changes in either of these rather different network parameters lead to identical316
bifurcation scenarios. This surprising result follows from the drive-response network configuration in317
particular.318

The first level of additional complication arose when modestly altering an internal parameter of the drive319
system. This effectively led to a nonlinear change in the response system’s median excitability, causing a320
dramatic change in the response’s bifurcation structure. Such bifurcation structures might be difficult to321
understand if encountered blindly, as might be the case when studying the dynamics of a network without322
knowledge of its internal structure. Experimental studies of neuronal networks often take a similar “black323
box” approach out of necessity, since detailed knowledge of connectivity (i.e., the “connectome”) is rarely324
available. In our case, however, we showed that knowledge of the nonlinearity, along with knowledge of325
the bifurcation structure of a single network, leads to a natural explanation of the additional features326
that arise due to the network-of-networks structure. In our particular case studies, we observed multiple327
distorted and reversed copies of the bifurcation structure that is associated with a single population of theta328
neurons. We therefore speculate that in “black box” investigations, the observation of such repeated and/or329
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distorted bifurcation structures might be indicative of driver-response-type connectivity in the network of330
study.331

Finally, we investigated the consequences of placing the driver system on a collective rhythmic state332
(i.e., a macroscopic periodic orbit). Our results were consistent with previous results that studied non-333
autonomous phase oscillator (So and Barreto (2011)) and theta neuron systems (So et al. (2014)). In those334
investigations, it was shown that networks of oscillators subjected to a sinusoidal variation of a network335
parameter led to complicated dynamics including quasiperiodicity and macroscopic chaos. Here, our336
driver-response arrangement of two separate interacting populations of theta neurons leads to an overall337
autonomous system, but with the response system being subjected to a periodic driving signal from the338
driver. Such arrangements might be found in real neuronal systems at the early stages of sensory input339
processing. For example, the lateral geniculate nucleus may be driven by a periodic visual signal delivered340
to the retina. Another candidate might be the trisynaptic circuit of the dentate gyrus and the CA3 and341
CA1 regions of the hippocampus (Kandel et al. (2000)). More generally, the information-processing342
capabilities of the brain are thought to be regulated by collective rhythms, notably theta and gamma343
oscillations, which arise in various areas and periodically drive other areas (Buzsáki (2006)).344

Our results may also have implications for populations of bursting neurons (So et al. (2014)). Neuronal345
bursting in individual neurons is commonly understood to arise as the result of the interplay between a346
slowly oscillating neuronal parameter (or “slow variable”) and the neuron’s fast spiking dynamics. Bur-347
sting arises if the slow parameter sweeps back and forth across bifurcations, and Rinzel and Ermentrout348
(1989) classified bursters as square, parabolic, or elliptic based on the bifurcations encountered in this pro-349
cess. It has also been demonstrated that slowly oscillating intra- and extracellular ion concentrations can350
lead to wide range of neuronal bursting behaviors (Cressman et al. (2009, 2011); Barreto and Cressman351
(2011)).352

Finally, we note that our explorations in this work were limited to cases in which the driver population’s353
parameters were either fixed or were varied only modestly. In the latter case, we changed the driver’s354
median excitability parameter only to the extent that its collective equilibrium state was displaced but not355
altered. Significantly greater complexity in the response’s dynamics would arise if the collective state of356
the driver were pushed across its own bifurcations, possibly resulting in topological changes and hyste-357
retic effects in the macroscopic driver’s state. As discussed above, such complexity would be difficult358
to understand if encountered in a “black box”-type investigation. Nevertheless, if it is known that the359
network of interest has a driver-response structure, it may be possible to comprehend the origin of such360
complexity in the manner that we have outlined here.361

This study constitutes an initial attempt at building a mathematically tractable model to understand the362
collective behavior of a hierarchical “network-of-networks” arrangement of model neurons. In future work363
we plan to consider networks of networks that include feedback connections and additional populations in364
an effort to understand the emergence of macroscopic dynamical complexity in more realistic networks.365
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